RBSE Solutions for Class 10 Maths Chapter 10 बिन्दु पथ Additional Questions is part of RBSE Solutions for Class 10 Maths. Here we have given Rajasthan Board RBSE Class 10 Maths Chapter 10 बिन्दु पथ Additional Questions.
Board | RBSE |
Textbook | SIERT, Rajasthan |
Class | Class 10 |
Subject | Maths |
Chapter | Chapter 10 |
Chapter Name | बिन्दु पथ |
Exercise | Additional Questions |
Number of Questions Solved | 52 |
Category | RBSE Solutions |
Rajasthan Board RBSE Class 10 Maths Chapter 10 बिन्दु पथ Additional Questions
विविध प्रश्नमाला 10
वस्तुनिष्ठ प्रश्न (1 से 7 तक)
प्रश्न 1.
किसी त्रिभुज के शीर्षों से समदूरस्थ (RBSESolutions.com) बिन्दु कहलाता है
(क) गुरुत्व केन्द्र
(ख) परिकेन्द्र
(ग) लम्बकेन्द्र
(घ) अन्त:केन्द्र
उत्तर:
(ख) परिकेन्द्र
प्रश्न 2.
त्रिभुज का गुरुत्व केन्द्र होता है
(क) त्रिभुज की भुजाओं के मध्य बिन्दुओं से खींचे गये लम्बे-समद्विभाजक को संगामी-बिन्दु
(ख) त्रिभुज के कोणों के समद्विभाजक का संगामी-बिन्दु
(ग) त्रिभुज की माध्यिकाओं का संगामी-बिन्दु
(घ) त्रिभुज के शीर्षलम्ब का संगामी बिन्दु
उत्तर:
(ग) त्रिभुज की माध्यिकाओं का संगामी-बिन्दु
प्रश्न 3.
समतल में लुढ़कने वाले वृत्त के केन्द्र का (RBSESolutions.com) बिन्दुपथ होता है
(क) वृत्त
(ख) वक्र
(ग) समतल के समान्तर रेखा
(घ) समतल पर लम्बवत् रेखा
उत्तर:
(ग) समतल के समान्तर रेखा
प्रश्न 4.
यदि किसी त्रिभुज की दो माध्यिकाएँ समान हों, तो त्रिभुज होगा
(क) समकोण त्रिभुज
(ख) समद्विबाहु त्रिभुज
(ग) समबाहु त्रिभुज
(घ) इनमें से कोई नहीं
उत्तर:
(ख) समद्विबाहु त्रिभुज
प्रश्न 5.
यदि AB और CD दो असमन्तिर रेखाएँ हों, तो इनसे समान दूरी पर रहने वाले बिन्दु P का बिन्दुपथ होगा
(क) बिन्दु P से होकर जाने वाली रेखाओं AB के समान्तर रेखा
(ख) बिन्दु P से होकर जाने वाली रेखाओं AB तथा CD से अन्तरित कोण की समद्विभाजक रेखा
(ग) बिन्दु P से होकर जाने वाली रेखाओं AB तथा CD के समान्तर रेखा
(घ) बिन्दु P से होकर जाने वाली रेखाओं AB तथा CD के लम्बवत् रेखा
उत्तर:
(ख) बिन्दु P से होकर जाने वाली रेखाओं AB तथा CD से अन्तरित कोण की समद्विभाजक रेखा
प्रश्न 6.
वह त्रिभुज जिसके लम्बकेन्द्र, परिकेन्द्र और अन्त:केन्द्र (RBSESolutions.com) सम्पाती हों, कहलाता है
(क) समबाहु त्रिभुज
(ख) समकोण त्रिभुज
(ग) समद्विबाहु त्रिभुज
(घ) इनमें से कोई नहीं
उत्तर:
(क) समबाहु त्रिभुज
प्रश्न 7.
वह त्रिभुज जिसका लम्बकेन्द्र त्रिभुज का शीर्ष बिन्दु होता है, कहलाता है
(क) समकोण त्रिभुज
(ख) समबाहु त्रिभुज
(ग) समद्विबाहु त्रिभुज
(घ) इनमें से कोई नहीं
उत्तर:
(क) समकोण त्रिभुज
प्रश्न 8.
घड़ी के पेन्डुलम के सिरे का बिन्दुपंथ लिखिये।
हल:
AB घड़ी के पेन्डुलम के सिरे का बिन्दु पथ एक वृत्त का चाप होगा यहाँ O केन्द्र तथा APB वृत्त का चाप है।
प्रश्न 9.
एक त्रिभुज ABC की भुजाओं BC, CA और AB के मध्य बिन्दु, (RBSESolutions.com) क्रमशः D, E और F हों, तो सिद्ध कीजिये कि EE, AD को समद्विभाजित करती है।
हल:
दिया है-
ΔABC में D, E और F क्रमशः भुजाओं BC, CA और AB के मध्य बिन्दु हैं। माध्यिका AD, EF को बिन्दु G पर काटती है।
रचना-
E और DIF को मिलाया। सिद्ध करना है-EE, AD को समद्विभाजित करती है।
उपपत्ति-
∴ E और F क्रमश: AC और AB के मध्य बिन्दु हैं।
\(\therefore \quad \mathrm{EF}=\frac{1}{2} \mathrm{BC}\)
तथा EF || BC
(त्रिभुज की दो भुजाओं के मध्य बिन्दुओं को F मिलाने वाला रेखाखण्ड तीसरी भुजा का आधा और उसके समान्तर होता है।)
∴ EF || BD
और EF = BD
ΔFAD में
FG || BD (क्योंकि (G, EF पर है।)
और E, AB का मध्य बिन्दु है।
∴ FG, AD को समद्विभाजित करेगी।
(त्रिभुज की किसी भुजा के मध्य बिन्दु से दूसरी भुजा के समान्तर खींची गई रेखा, (RBSESolutions.com) तीसरी भुजा के मध्य बिन्दु पर मिलती है।)
∴ G, AD का मध्य बिन्दु है। यहाँ पर G, EF पर स्थित है। इसलिये FE, AD को समद्विभाजित करती है।
\(\begin{array}{ll}{\therefore \quad} & {\mathrm{FG}=\frac{1}{2} \mathrm{FD}} \\ {\therefore} & {\mathrm{FG}=\frac{1}{2} \mathrm{EF}}\end{array}\) क्योंकि (BD = FE)
∴ G, FE का मध्य बन्दु है। अर्थात् AD, रेखाखण्ड EF को भी समद्विभाजित करती है।
अन्य महत्त्वपूर्ण प्रश्न
वस्तुनिष्ठ प्रश्न
प्रश्न 1.
बँटे से बँधी बकरी बँटे के चारों ओर अधिक से अधिक दूरी पर चक्कर लगाने पर आकृति बनाती है
(क) वर्गाकार
(ख) वृत्ताकार
(ग) त्रिभुजाकार
(घ) आयताकार
उत्तर:
(ख) वृत्ताकार
प्रश्न 2.
पंखे के ब्लेडों के सिरे से घूमते समय आकृति बनती है
(क) वर्गाकार
(ख) वृत्ताकार
(ग) त्रिभुजाकार
(घ) दीर्घ वृत्ताकार
उत्तर:
(ख) वृत्ताकार
प्रश्न 3.
एक स्थिर बिन्दु A के चारों ओर आकाश में, A से सदा 4 सेमी. (RBSESolutions.com) की दूरी पर एक दूसरा बिन्दु B परिभ्रमण कर रही है। बिन्दु B का बिन्दुपथ होगा
(क) एक गोला।
(ख) एक वृत्त
(ग) एक अर्द्धगोला
(घ) इनमें से कोई नहीं
उत्तर:
(ख) एक वृत्त
प्रश्न 4.
10 सेमी. त्रिज्या वाले वृत्त की त्रिज्याओं के मध्य बिन्दुओं को बिन्दुपथ होगा
(क) 15 सेमी. त्रिज्या का वृत्त
(ख) 2.5 सेमी. त्रिज्या का संकेन्द्रीय वृत्त
(ग) 5 सेमी. त्रिज्या का संकेन्द्र वृत्त
(घ) 7.5 सेमी. त्रिज्या का वृत्त
उत्तर:
(ग) 5 सेमी. त्रिज्या का संकेन्द्र वृत्त
प्रश्न 5.
AABC एक समद्विबाहु त्रिभुज है। शीर्ष A का बिन्दुपथ (RBSESolutions.com) जो B और C से समान दूरी पर रहता है, होगा
(क) AB के समान्तर रेखा
(ख) AC के समान्तर रेखा
(ग) BC के समान्तर रेखा
(घ) BC की लम्बार्धक रेखा
उत्तर:
(घ) BC की लम्बार्धक रेखा
प्रश्न 6.
किसी त्रिभुज की भुजाओं से समदूरस्थ बिन्दु कहलाता है
(क) परिकेन्द्र
(ख) अन्त:केन्द्र
(ग) केन्द्रक
(घ) लम्ब केन्द्र
उत्तर:
(ख) अन्त:केन्द्र
प्रश्न 7.
AB एक स्थिर रेखा है तथा P एक चर बिन्दु है। जिसकी दूरी AB रेखा से प्रत्येक स्थिति में 2.5 सेमी. रहती है तो P का बिन्दुपथ होगा
(क) P से AB पर डाला गया लम्ब PC 2.5 सेमी.
(ख) रेखा PC
(ग) रेखा PB
(घ) P से जाती हुई AB के समान्तर रेखा
उत्तर:
(घ) P से जाती हुई AB के समान्तर रेखा
प्रश्न 8.
किसी त्रिभुज में माध्यिकाओं का प्रतिच्छेद (RBSESolutions.com) बिन्दु होता है
(क) लम्ब केन्द्र
(ख) परिवृत्त का केन्द्र
(ग) अन्त:वृत्त का केन्द्र
(घ) केन्द्रक
उत्तर:
(घ) केन्द्रक
प्रश्न 9.
5 सेमी. आधार पर समद्विबाहु त्रिभुज बनायें इन त्रिभुजों के शीर्ष बिन्दुओं का बिन्दुपथ होगा
(क) आधार की त्रिज्या मानकर खींचा गया वृत्त
(ख) आधार को व्यास मानकर खींचा गया वृत्त
(ग) आधार का लम्ब अर्द्धक
(घ) आधार के कोणों के अर्द्धक
उत्तर:
(ग) आधार का लम्ब अर्द्धक
प्रश्न 10.
दो बिन्दुओं में होकर गुजरने वाले वृत्तों के केन्द्र का बिन्दुपथ है
(क) उन बिन्दुओं को मिलाने वाली सरल रेखा के समान्तर सरल रेखा
(ख) उन बिन्दुओं को मिलाने वाली सरल रेखा की लम्ब अर्द्धक रेखा
(ग) वृत्त की परिधि
(घ) वर्ग
उत्तर:
(ख) उन बिन्दुओं को मिलाने वाली सरल रेखा की लम्ब अर्द्धक रेखा
प्रश्न 11.
त्रिभुज के केन्द्रक प्रत्येक माध्यिका को विभाजित (RBSESolutions.com) करता है—
(क) 2 : 1
(ख) 1 : 2
(ग) 2 : 3
(घ) 3 : 2
उत्तर:
(क) 2 : 1
प्रश्न 12.
चर्बी वाले झूले में झूलने को बिन्दु पथ होगा—
(क) लम्ब अर्द्धक
(ख) रेखाखण्ड
(ग) अर्द्धवृत्त
(घ) वृत्त
उत्तर:
(घ) वृत्त
प्रश्न 13.
आकाश में बिन्दुओं के बिन्दुपथ की कल्पना की जा सकती है।
(क) गोला
(ख) घनाभ
(ग) बेलन
(घ) शंकु
उत्तर:
(क) गोला
अतिलघूत्तरात्मक प्रश्न
प्रश्न 1.
किसी दिये हुए आधार के एक ही ओर अन्तरित होने वाले (RBSESolutions.com) समकोणों के शीर्षों का बिन्दुपथ लिखिये।
उत्तर:
आधार के समान्तर शीर्ष बिन्दुओं को मिलाने वाली रेखा इसका बिन्दुपथ होगा।
प्रश्न 2.
दो समान्तर सरल रेखाओं से समान दूरी पर रहने वाले बिन्दुओं का बिन्दुपथ लिखिये।।
उत्तर:
समान्तर सरल रेखाओं के मध्य की समान्तर रेखा।
प्रश्न 3.
5 सेमी. आधार पर रचित समद्विबाहु त्रिभुजों में शीर्ष बिन्दुओं को बिन्दुपथ लिखिये।
उत्तर:
इनका बिन्दुपथ शीर्ष से गुजरती हुई आधार के समान्तर रेखा होगी।
प्रश्न 4.
समान आधार व समान क्षेत्रफल वाले त्रिभुजों के शीर्ष का बिन्दुपथ लिखिये।
उत्तर:
आधार के समान्तर खींची गई रेखा जो त्रिभुजों के शीर्षों से गुजरती
प्रश्न 5.
बिन्दु O से 2 सेमी. की दूरी पर रहने वाले बिन्दुओं का बिन्दुपथ – लिखिये।
उत्तर:
बिन्दु O से 2 सेमी. की त्रिज्या का खींचा गया वृत्त।
प्रश्न 6.
∠ABC = 135° उन बिन्दुओं का बिन्दुपथ लिखिये जिनकी AB व BC से दूरी समान हो।
उत्तर:
∠ABC को समद्विभाजित करने वाली रेखा बिन्दुपथ होगी।
प्रश्न 7.
दो बिन्दुओं में से होकर गुजरने वाले वृत्तों के केन्द्रों का (RBSESolutions.com) बिन्दुपथ लिखिये।
उत्तर:
दोनों बिन्दुओं को मिलाने वाली रेखा का लम्बअर्द्धक बिन्दुपथ होगा।
प्रश्न 8.
उस बिन्दु का बिन्दुपथ लिखिये जिसकी स्थिर बिन्दु M से दूरी सदा 5.3 सेमी. हो।
उत्तर:
स्थिर बिन्दु M को केन्द्र मानकर 5.3 सेमी. त्रिज्या का वृत्त खींचने पर वृत्त की परिधि पर अभीष्ट बिन्दुपथ होगा।
प्रश्न 9.
समतल में लुढ़कने वाले वृत्त के केन्द्र का बिन्दुपथ लिखिए।
उत्तर:
समतल के समान्तर रेखा।
प्रश्न 10.
किसी त्रिभुज के शीर्षों से समान दूरी पर स्थित बिन्दु को नाम लिखिए।
उत्तर:
परिकेन्द्र।
प्रश्न 11.
जिस त्रिभुज में लम्बकेन्द्र, परिकेन्द्र और अन्त:केन्द्र एक ही हों, (RBSESolutions.com) उस त्रिभुज का नाम लिखिए।
उत्तर:
समबाहु त्रिभुज
प्रश्न 12.
त्रिभुज के अन्दर उस बिन्दु का बिन्दुपथ ज्ञात कीजिये जो कि त्रिभुज की तीनों भुजाओं से समान दूरी पर हो।।
उत्तर:
हम जानते हैं कि त्रिभुज की तीनों भुजाओं से समान दूरी पर स्थित बिन्दु वृत्त का अन्त:केन्द्र होता है।
प्रश्न 13.
तीन असंरेखीय बिन्दु A, B तथा C से होकर जाने वाले वृत्त के केन्द्र का बिन्दुपथ निर्धारित कीजिये।
उत्तर:
एक बिन्दु जो भुजाओं AB तथा BC के लम्ब समद्विभाजकों का प्रतिच्छेद बिन्दु O होगा।
प्रश्न 14.
एक घड़ी में सेकण्ड की सुई के सिरे का बिन्दुपथ लिखिए। (माध्य. शिक्षा बोर्ड, मॉडल पेपर, 2017-18)
उत्तर:
वृत्त
प्रश्न 15.
तीन असंरेखीय बिन्दुओं से गुजरने वाले वृत्तों की संख्या लिखिए। (माध्य. (RBSESolutions.com) शिक्षा बोर्ड, मॉडल पेपर, 2017-18)
उत्तर:
तीन बिन्दु जो एक सरल रेखा में नहीं हैं, से होकर जाने वाला एक ही वृत्त है।
प्रश्न 16.
दो दिये गये बिन्दुओं से समदूरस्थ बिन्दुओं का बिन्दुपथ लिखिये। (माध्य. शिक्षा बोर्ड, 2018)
उत्तर:
दिये हुये दो बिन्दुओं से समदूरस्थ किसी बिन्दु को बिन्दुपथ उन्हें मिलाने वाले रेखाखण्ड का लम्ब समद्विभाजक होता है।
लघूत्तरात्मक प्रश्न
प्रश्न 1.
सिद्ध करो कि दो स्थिर बिन्दुओं से बराबर दूरी पर स्थित बिन्दुओं का बिन्दुपथ स्थिर बिन्दुओं में खींचे जाने वाले रेखाखण्ड की लम्बार्द्धक रेखा होती है।
हल:
दिया है-
A और B दो स्थिर बिन्दु हैं। एक बिन्दु P इस तरह चलता है कि हर दशा में AP = PB.
सिद्ध करना है-
बिन्दु P सरल रेखा AB के लम्बद्विभाजक पर है।
रचना-
A और B को मिलाओ, AB पर PO लम्ब खींचो। AP और PB को मिलाओ।
उपपत्ति-
ΔAOP एवं ΔBOP में
AP = BP (दिया है)
AO = OB (रचना से)
OP = OP (उभयनिष्ठ)
भुजा-भुजा-भुजा सर्वांगसमता गुणधर्म से
ΔAOP = ΔBOP
अतः ∠AOP = ∠BOP = 90°
अर्थात् OP रेखा AB का लम्ब-समद्विभाजक है। यही सिद्ध करना था।
प्रश्न 2.
ΔPBC और ΔOBC एक ही आधार पर विपरीत दिशा में दो समद्विबाहु त्रिभुज हैं। (RBSESolutions.com) जैसा कि चित्र में दिखाया गया है। सिद्ध कीजिये रेखा PQ, रेखाखण्ड BC का लम्ब समद्विभाजक है।
हल:
दिया है-
दो समद्विबाहु APBC व ΔQBC आधार BC के विपरीत ओर स्थित हैं। तथा
BP = PC
BQ= QC
सिद्ध करना है-
PQ. BC का लम्ब समद्विभाजक
उपपत्ति-
चूँकि APBC एक समद्विबाहु त्रिभुज है। (ज्ञात है)
∴ PB = PC
चूँकि दो बिन्दुओं B और C से समदूरस्थ बिन्दु का पथ BC के लम्ब समद्विभाजक l पर स्थित होता है।
∴ P रेखा l पर स्थित है। इसी प्रकार Q भी रेखा l पर स्थित है।
∴ \(\stackrel{\leftrightarrow}{\mathrm{PQ}}\) रेखाखण्ड BC का लम्ब समद्विभाजक है।
प्रश्न 3.
त्रिभुज की भुजाओं के लम्ब समद्विभाजक (RBSESolutions.com) संगामी होते हैं।
अथवा
त्रिभुज की तीनों भुजाओं के लम्ब समद्विभाजक एक ही बिन्दु से होकर जाते हैं।
हल:
दिया है-
ΔABC में भुजा AB एवं AC के लम्ब-समद्विभाजक बिन्दु O पर मिलते हैं और OD भुजा BC पर लम्ब है।
सिद्ध करना है-
OD, भुजा BC का लम्ब समद्विभाजक है।
रचना-
OA, OB और C को मिलाया।
उपपत्ति-
OE एवं OF क्रमश: AC एवं AB के लम्ब-समद्विभाजक हैं, अतः
OA = OB = OC
ΔBOD व ΔDOC में
OB = OC तथा OD उभयनिष्ठ है।
अतः ΔBOD = ΔDOC
∴ ∠BDO = ∠ODC
तथा ∠BDO + ∠ODC = 180°
∴ ∠BDO +∠BDO = 180°
∴ ∠BDO = 90° B
∴ OD भुजा BC पर लम्ब है OB = OC
अतः OD भुजा BC का लम्ब समद्विभाजक है।
प्रश्न 4.
त्रिभुज के कोणों के समद्विभाजक संगामी (RBSESolutions.com) होते हैं।
अथवा
त्रिभुज के कोणों के समद्विभाजक एक ही बिन्दु से होकर जाते हैं।
हल:
दिया है-
ΔABC में ∠B एवं ∠C के समद्विभाजक बिन्दु O पर मिलते हैं।
सिद्ध करना है-
OA, ∠A को समद्विभाजित करता है।
रचना-
O से लम्ब OD, OE और OF खींचे।
उपपत्ति-
OB एवं OC क्रमशः ∠B एवं ∠C के समद्विभाजक हैं अतः
OD = OF ………..(1)
और OD = OE …..(2)
(1) और (2) से OE = OF
अत: O, AB और AC से समान दूरी पर स्थित है।
अर्थात् OA, ∠A को समद्विभाजित करता है। इतिसिद्धम्
प्रश्न 5.
चित्र में, BC को लम्ब-समद्विभाजक AD हो, तो सिद्ध (RBSESolutions.com) कीजिए कि ∠ABP = ∠ACP.
हल:
दिया है-
BC का लम्ब-समद्विभाजक AD है।
सिद्ध करना है-
∠ABP = ∠ACP
उपपत्ति-
बिन्दु A, भुजा BC के लम्बसमद्विभाजक पर स्थित है।
∴ AB = AC
∴ ∠ABC = ∠ACB …..(1)
इसी प्रकार बिन्दु P भी, भुजा BC के लम्ब-समद्विभाजक (RBSESolutions.com) पर स्थित है।
∴ PB = PC
∴ ∠PBC = ∠PCB …..(2)
समीकरण (1) और (2) से
∠ABC – ∠PBC = ∠ACB – ∠PCB
∠ABP = ∠ACP इतिसिद्धम्
प्रश्न 6.
त्रिभुज ABC में ∠A को समद्विभाजक AD है। AB एवं AC पर लम्ब क्रमशः DE तथा DF हैं। सिद्ध कीजिए कि DE = DE.
हल:
दिया है-
कोण A का समद्विभाजक AD है, अतः बिन्दु D, ∠BAC की भुजाओं AB और AC से समान दूरी पर है। यहाँ DE बिन्दु D की AB से और DE, बिन्दु D की AC से दूरी है।
अतः DE = DF
प्रश्न 7.
एक ही आधार BC पर तीन समद्विबाहु त्रिभुज ∆PBC, ∆QBC और ∆RBC स्थित हैं। (RBSESolutions.com) सिद्ध कीजिए कि P Q और R समरेख हैं।
हल:
दिया हुआ है:
∆PBC, ∆QBC तथा ΔRBC इस प्रकार हैं कि PB = PC, QB = QC, RB = RC
सिद्ध करना है-
P, Q, R समरेख हैं।
उपपत्ति-
∆PBC समद्विबाहु है
दिया हुआ है-
PB = PC, B और C से समदूरस्थ बिन्दु पथ BC का लम्बअर्द्धक होगा, मान लीजिए यह l है।
P बिन्दु l पर स्थित है। …..(1)
इसी प्रकार Q और R, l पर स्थित हैं। …..(2)
(1) व (2) से P Q व R समरेख हैं।
प्रश्न 8.
चतुर्भुज ABCD के ∠B एवं ∠C के अर्द्धक परस्पर बिन्दु P पर मिलते हैं। (RBSESolutions.com) सिद्ध कीजिए कि बिन्दु P सम्मुख भुजाओं AB और CD से समदूरस्थ है।
हल:
दिया हुआ है-
चतुर्भुज ABCD जिसमें ∠B व ∠C के अर्द्धक P पर मिलते हैं, साथ ही PM ⊥ AB तथा PN ⊥ CD
सिद्ध करना है-
PM = PN
रचना-
PL ⊥ BC खींचा।
उपपत्ति-
∠B के अर्द्धक पर बिन्दु P स्थित है। (दिया हुआ है)।
∴ PM = PL ……………………….(1)
∵ ∠C के अंर्द्धक पर भी बिन्दु P स्थित है (दिया हुआ है)
∴ PL = PN ……………………… (2)
(1) व (2) से PM = PN इतिसिद्धम्
प्रश्न 9.
एक ∆ABC में माध्यिकाएँ AD, BE और CF एक बिन्दु G से गुजरती हैं। (RBSESolutions.com) यदि AG = 6 सेमी., BE = 12.6 सेमी. और FG = 3 सेमी. हो, तो DG, GE और GC ज्ञात कीजिए।
हल:
हम जानते हैं कि केन्द्रक G त्रिभुज B
की माध्यिका को 2 : 1 के अनुपात में विभाजित करता है।
निबन्धात्मक प्रश्न
प्रश्न 1.
त्रिभुज के तीनों शीर्षलम्ब संगामी होते हैं।
अथवा
सिद्ध कीजिए कि किसी त्रिभुज के शीर्ष लम्ब (RBSESolutions.com) संगामी होते हैं।
हल:
दिया है-
ΔABC के R AD, BE एवं CF शीर्षलम्ब हैं।
सिद्ध करना है-
AD, BE एवं CF एक ही बिन्दु से होकर जाते हैं।
रचना-
शीर्ष A, B तथा C से RQ || BC, RP || AC 39 QP || AB खींचकर ΔPQR बनाया।
उपपत्ति-
चतुर्भुज BCAR में,
AC || RB (रचना से)
और BC || RA (रचना से)
∴ BCAR एक समान्तर चतुर्भुज है।
अतः RA = BC ………………………..(1)
(समान्तर चतुर्भुज की सम्मुख भुजाएँ समान होती हैं।)
इसी प्रकार ABCQ भी एक समान्तर चतुर्भुज है,
अतः AQ = BC …..(2)
(1) और (2) से AR = AQ …..(3)
एवं AD ⊥ BC और BC || QR
अतः AD ⊥ QR …..(4)
समीकरण (3) और (4) से, AD भुजा QR का लम्ब-समद्विभाजक है। (RBSESolutions.com) इसी प्रकार BE एवं CF क्रमश: PR एवं PQ के लम्ब-समद्विभाजक है। इस प्रकार AD, BE और CE, APQR की भुजाओं के लम्ब-समद्विभाजक हैं। अतः AD, BE और CF एक ही बिन्दु से होकर जाते हैं। इतिसिद्धम्।
प्रश्न 2.
यदि एक त्रिभुज की सभी माध्यिकाएँ समान हों, तो वह समबाहु त्रिभुज होगा।
हल:
दिया है-
∆ABC की माध्यिकाएँ AD, DE और CF बिन्दु G पर मिलती हैं और AD = BE = CF
सिद्ध करना है-
∆ABC एक समबाहु त्रिभुज है।
उपपत्ति-
हम जानते हैं कि त्रिभुज की माध्यिकाओं को केन्द्रक 2 : 1 के अनुपात (RBSESolutions.com) में विभाजित करता है।
प्रश्न 3.
एक त्रिभुज की दो माध्यिकाएँ समान माप की हों तो वह त्रिभुज समद्विबाहु (RBSESolutions.com) त्रिभुज होता है।
हल:
दिया हुआ है-
∆ABC में BE एवं CF दो समान माप की माध्यिकाएँ हैं।
तथा BE = CE, F तथा E क्रमशः AB तथा AC के मध्य बिन्दु हैं।
सिद्ध करना है-
∆ABC समद्विबाहु त्रिभुज है।
उपपत्ति-
∆ABC का केन्द्रक G है (ज्ञात है)
प्रश्न 4.
एक ∆ABC की माध्यिकाएँ AD, BE और CF एक बिन्दु G से गुजरती हैं। (RBSESolutions.com) यदि AG = 5 सेमी., BE = 12 सेमी. और FG = 3 सेमी. हो तो AD, GE और GC ज्ञात कीजिए। (माध्य. शिक्षा बोर्ड, मॉडल पेपर, 2017-18)
हल:
चित्र में ΔABC की माध्यिकायें AD, BE और CF हैं जो एक बिन्दु G से गुजरती हैं।
हम जानते हैं कि बिन्दु G माध्यिकाओं को 2: 1 में अन्त:विभाजित करता है।
\(=\frac{15}{2}=7.5\) सेमी.
\(G E=\frac{1}{3} B E=\frac{1}{3} \times 12=4\) सेमी.
तथा \(\mathrm{GC}=2 \mathrm{FG}=2 \times 3=6\) सेमी.
प्रश्न 5.
एक त्रिभुज ABC में माध्यिकाएँ AD, BE और CF एक बिन्दु G से गुजरती हैं। (RBSESolutions.com) यदि AD = 9 सेमी., GE = 4.2 सेमी. और GC = 6 सेमी., तो AG, BE और FC की लम्बाइयों के मान ज्ञात कीजिए।
(माध्य. शिक्षा बोर्ड, 2018)
हल:
हम जानते हैं कि केन्द्रक G त्रिभुज की माध्यिका को 2: 1 के अनुपात में विभाजित करता है।
We hope the RBSE Solutions for Class 10 Maths Chapter 10 बिन्दु पथ Additional Questions help you. If you have any query regarding Rajasthan Board RBSE Class 10 Maths Chapter 10 बिन्दु पथ Additional Questions drop a comment below and we will get back to you at the earliest.
Leave a Reply