• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • RBSE Model Papers
    • RBSE Class 12th Board Model Papers 2022
    • RBSE Class 10th Board Model Papers 2022
    • RBSE Class 8th Board Model Papers 2022
    • RBSE Class 5th Board Model Papers 2022
  • RBSE Books
  • RBSE Solutions for Class 10
    • RBSE Solutions for Class 10 Maths
    • RBSE Solutions for Class 10 Science
    • RBSE Solutions for Class 10 Social Science
    • RBSE Solutions for Class 10 English First Flight & Footprints without Feet
    • RBSE Solutions for Class 10 Hindi
    • RBSE Solutions for Class 10 Sanskrit
    • RBSE Solutions for Class 10 Rajasthan Adhyayan
    • RBSE Solutions for Class 10 Physical Education
  • RBSE Solutions for Class 9
    • RBSE Solutions for Class 9 Maths
    • RBSE Solutions for Class 9 Science
    • RBSE Solutions for Class 9 Social Science
    • RBSE Solutions for Class 9 English
    • RBSE Solutions for Class 9 Hindi
    • RBSE Solutions for Class 9 Sanskrit
    • RBSE Solutions for Class 9 Rajasthan Adhyayan
    • RBSE Solutions for Class 9 Physical Education
    • RBSE Solutions for Class 9 Information Technology
  • RBSE Solutions for Class 8
    • RBSE Solutions for Class 8 Maths
    • RBSE Solutions for Class 8 Science
    • RBSE Solutions for Class 8 Social Science
    • RBSE Solutions for Class 8 English
    • RBSE Solutions for Class 8 Hindi
    • RBSE Solutions for Class 8 Sanskrit
    • RBSE Solutions

RBSE Solutions

Rajasthan Board Textbook Solutions for Class 5, 6, 7, 8, 9, 10, 11 and 12

  • RBSE Solutions for Class 7
    • RBSE Solutions for Class 7 Maths
    • RBSE Solutions for Class 7 Science
    • RBSE Solutions for Class 7 Social Science
    • RBSE Solutions for Class 7 English
    • RBSE Solutions for Class 7 Hindi
    • RBSE Solutions for Class 7 Sanskrit
  • RBSE Solutions for Class 6
    • RBSE Solutions for Class 6 Maths
    • RBSE Solutions for Class 6 Science
    • RBSE Solutions for Class 6 Social Science
    • RBSE Solutions for Class 6 English
    • RBSE Solutions for Class 6 Hindi
    • RBSE Solutions for Class 6 Sanskrit
  • RBSE Solutions for Class 5
    • RBSE Solutions for Class 5 Maths
    • RBSE Solutions for Class 5 Environmental Studies
    • RBSE Solutions for Class 5 English
    • RBSE Solutions for Class 5 Hindi
  • RBSE Solutions Class 12
    • RBSE Solutions for Class 12 Maths
    • RBSE Solutions for Class 12 Physics
    • RBSE Solutions for Class 12 Chemistry
    • RBSE Solutions for Class 12 Biology
    • RBSE Solutions for Class 12 English
    • RBSE Solutions for Class 12 Hindi
    • RBSE Solutions for Class 12 Sanskrit
  • RBSE Class 11

RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions

April 10, 2019 by Fazal Leave a Comment

   

RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions is part of RBSE Solutions for Class 10 Maths. Here we have given Rajasthan Board RBSE Class 10 Maths Chapter 13 Circle and Tangent Additional Questions.

Rajasthan Board RBSE Class 10 Maths Chapter 13 Circle and Tangent Additional Questions

Multiple Choice Questions :
Question 1.
A point Q is 13 cm away from the center (RBSESolutions.com) of a circle and the length PQ of the tangent drawn from P to the circle is 12 cm, then radius of circle is (in cm) [CBSE 2012]
(A) 25
(B) \(\sqrt { 313 }\)
(C) 5
(D) 1
Solution :
PQ is the tangent on circle drawn from external point Q and OP is radius of circle.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 1
So, ∠OPQ = 90° (By theorem 13.1)
From right angled OPQ
OQ2 = PQ2 + OP2 (By Pythagoras theorem)
⇒ 132 = 122 + OP2
⇒ OP2 = 132 – 122
⇒ OP2 = (13 + 12) (13 – 12)
⇒ OP2 = 25
⇒ OP = \(\sqrt { 25 }\) = 5 cm
Hence, correct choice is (C).

RBSE Solutions

Question 2.
In the figure AP, AQ and BC are the (RBSESolutions.com) tangent of a circle. If AB = 5 cm,AC = 6 cm and BC = 4 cm, then length of AP is (in cm). [CBSE 2012]
(A) 7.5
(B) 15
(C) 10
(D) 9
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 2
Solution :
Since we know that length of tangents drawn on cine from an external point are equal
So, BP = BD (Tangents on circle from point B) ……(i)
CQ = CD (Tangents on circle from point C) ……(ii)
AP = AQ (Tangents (RBSESolutions.com) on circle from point A) ……(iii)
AP = AB + BP ⇒ AP = 5 + BD ……(iv)
AQ = AC + CQ ⇒ AQ = 6 + CD ……(v)
Adding equation (iv) and (v)
AP + AQ = 5 + BD + 6 + CD
⇒ AP + AP = 11 + BD + CD [By using equation (iii)]
⇒ 2 AP = 11 + BC
⇒ 2 AP = 11 + 4
⇒ 2 AP = 15 ⇒ AP = 7.5 cm
Hence, correct choice is (A).

Question 3.
In the figure PA and PB are tangents (RBSESolutions.com) to the circle C(O, r) from an external point P. If angle between in these tangents is 70°, then ∠POA is equal to.
(A) 60°
(B) 110°
(C) 55°
(D) 90°.
Solution :
PA and PB are tangents to a circle from point P and OA and OB are radius of circle. So AP ⊥ OA and PB ⊥ OB.
∴ ∠OAP = 90°
and ∠OBP = 90°
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 3
Now ∠AOB + ∠APB = 180°
⇒ ∠AOB + 70° = 180°
⇒ ∠AOB = 180° – 70°
∴ ∠AOB = 110°
∵ line OP is bisect of ∠AOB
∴ ∠POA = \(\frac { \angle AOB }{ 2 } \) = \(\frac { { 110 }^{ \circ } }{ 2 } \) = 55°
∴ ∠POA = 55°
Hence, correct choice is (C).

Question 4.
If four sides of rhombus ABCD touch (RBSESolutions.com) a circle, then
(A) AC + AD = BD + CD
(B) AB + CD = BC + AD
(C) AB + CD = AC + BC
(D) AC + AD = BC + DB.
Solution :
Correct choice is (B).

Question 5.
Two circle intersects each other at …… point.
(A) One
(B) To
(C) Three
(D) None of these
Solution :
Correct choice is (B).

RBSE Solutions

Question 6.
In the figure, AT is a tangent to a (RBSESolutions.com) circle with center O. If OT = 4 cm and ∠OTA = 30°, then AT is equals to.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 4
(A) 4 cm
(B) 2 cm
(C) 2\(\sqrt { 3 }\) cm
(D) 4\(\sqrt { 3 }\) cm [NCERT Exemplar Problem]
Solution :
Join OA. since AT is the tangent on the circle an OA is the radius of the circle. and OA is the radius of the circle.
So, AT ⊥ OA i.e., ∠OAT = 90°
From the right angled ΔOAT
∠OTA = 30° and OT = 4 cm
cos 30° = \(\frac { AT }{ OT }\)
⇒ \(\frac { \sqrt { 3 } }{ 2 }\) = \(\frac { AT }{ 4 }\)
⇒ AT = \(\frac { 4\sqrt { 3 } }{ 2 } \)
= 2\(\sqrt { 3 }\)
Hence, correct choice is (C).

Question 7.
In the following figure BC is diameter (RBSESolutions.com) of circle. AS is the tangent of circle at point A. If ∠ABC = 38°, then find ∠BAS.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 5
(A) 52°
(B) 50°
(C) 62°
(D) 75°
Solution :
∵ BC is the diameter of circle.
∴ In ∆ABC,
∠BAC = 90°
∵ ∠ABC = 38° (given)
∵ ∠ACB = 180° – (∠ABC + ∠BAC)
= 180° – (38° + 90°)
or ∠ACB = 52°
Now, ∵ ∠BAS = ∠ACB
∴ ∠BAS = 52°
Hence, correct choice is (A).

Question 8.
According to following (RBSESolutions.com) figure if ∠PQR = 50°, then value of ∠QSR will be
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 6
(A) 90°
(B) 50°
(C) 40°
(D) 30°
Solution :
∠QSR is the angle made in (RBSESolutions.com) alternate circle sector of ∠PQR.
∴ ∠PQR = ∠QSR
= 50°
So, correct choice is (B).

Question 9.
In the figure, the value of ∠PQR is
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 7
(A) 30°
(B) 50°
(C) 60°
(D) 90°
Solution :
We know that, angle made in
semicircle in right angle.
∴ ∠PQR = 90°
So, correct choice is (D).

RBSE Solutions

Question 10.
In the figure OP = 5 cm and radius (RBSESolutions.com) of circle = 3 cm, then find the length of tangent OPT drawn from point P circle.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 8
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 9
(A) 3 cm
(B) 4 cm
(C) 5 cm
(D) 6 cm
Solution :
∵ ∠OTP = 90°
From right angled ∆OTP
OP2 = OT2 + PT2
PT2 = OP2 – OT2
= 52 – 32
= 25 – 9 = 16
PT = \(\sqrt { 16 }\)
PT = 4 cm
So, correct choice is (B).

Short/Long Answer Type Questions
Question 1.
Answer the (RBSESolutions.com) following in ‘Yes’ and ‘No’.
(i) The length of two tangents of a circle is always same,
(ii) Scant drawn on any circle intersect two points on the circle.
(iii) In the circumscribed circle of an isoscale triangle ABC, the tangents on point A are such as AB = AC, which is parallel to BC.
(iv) Tangent and common points of a circle are called tangent points.
(v) The tangent on a point of a circle is parallel to radius passing thought the point of contact.
Solution :
(i) Yes
(ii) Yes
(iii) Yes
(iv) Yes
(v) No.

Question 2.
Fill in the blanks:
(i) Tangent at any point of circle is (RBSESolutions.com) perpendicular to …… passing through point of contact.
(ii) There are exactly ……. tangents to a circle through a point lying outside the circle.
(iii) Tangent and common point of circle are called ………… .
(iv) There is no common point on line and circle. In such condition line in respect to circle is …….
Solution :
(i) Radius
(ii) Two
(iii) Point of Contact
(iv) Non-intersection line.

RBSE Solutions

Question 3.
How many tangents of circle can have?
Solution :
A tangent can be drawn from each point of the circumference of a circle as there are infinite points on the circumference of a circle. Hence, infinite tangents can be (RBSESolutions.com) drawn on circle.

Question 4.
Draw a tangent at any point of circle with radius 3 cm.
Solution :
Draw a tangent with the circle of radius 3 cm.
Construction : Let any point O. Draw a circle with radius r and take O as center. Mark a point P at the circumference of the circle and join O to P. OP is the radius of circle which is perpendicular to AB.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 10
Note : Tangent drawn from only point of (RBSESolutions.com) the circle is perpendicular to the line which joins the centre.
OP ⊥ AB.

Question 5.
Two tangents RA and RB are drawn to a circle with center O from an external point R. If angle between tangents O and ∠AOB = 140° then find the value of angle θ. [Higher secondary board Raj. 2015]
Solution :
Given :
∠AOB = 140°
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 11
θ + 90° + 90° + 140° = 360°
θ + 320° = 360°
θ = 360° – 320° = 40°.

Question 6.
In the following figure, show that angle (RBSESolutions.com) which a chord of circle makes inalternate segment.
Solution :
In the figure XY is a tangent and PT is a chord. Hence ∠PAT and ∠PBT are angle made in alternate segment.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 12

Question 7.
Prove that the tangents drawn at the ends of a diameter of a circle are parallel. [CBSE 2012]
Solution :
Given :
A circle with center O has (RBSESolutions.com) diameter AB. PQ and RS are the tangents at the points A and B.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 13
To prove: PQ || RS.
Proof : PQ is the tangents to the circle at the point A. OA is radius
∴∠1 = 90°
Similarly RS ⊥ OB
∴∠2 = 90°
Now, ∠1 = ∠2
But this ¡s alternate angle of two (RBSESolutions.com) parallel lines, when a transversal cuts them.
∴ PQ || RS
Hence, the tangents drawn at the ends of a diameter of a circle are parallel.

RBSE Solutions

Question 8.
In the figure, PA and PB are two tangents to the circle with center O. One point M is on the circle, then prove that
PL + LM = PN + MN.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 14
Solution :
Given :
PA and PB are two tangent of the (RBSESolutions.com) circle. Line segment LN touches the circle at point M.
To prove:
PL + LM = PN + MN
Proof :
∴ Two tangents PA and PB drawn from point P.
So PA = PB
or PL + LA = PN + NB
Two tangents LA and LM are from point L
So LA = LM …(ii)
Similarly NB = NM .. .(iii)
From equation (i), (ii) and (iii) we get.
PL + LM = PN + NM.

Question 9.
In the figure, a circle touches all the (RBSESolutions.com) four sides of a quadrilateral ABCD. If AB = 8 cm BC = 6 cm and AD = 5 cm, then find CD.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 15
Solution :
Let the circle touches all the sides of quadrilateral ABCD at the point P, Q, R and S.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 16
We know that tangents to a circle (RBSESolutions.com) from an external point are equal.
AP = AS …..(i)
BP= BQ …(ii)
CR = CQ …..(iii)
DR = DS ……(iv)
Adding equation (i), (ii), (iii) and (iv)
AP + BP + CR + DR = AS + BQ + CQ + DS
⇒ AP + BP + CR + DR = AS + DS + BQ + CQ
⇒ AB + CD = AD + BC
⇒ 8 + CD = 5 + 6
⇒ 8 + CD = 11
⇒ CD = 11 – 8
∴ CD = 3 cm

Question 10.
In the figure, PQ is a chord of circle with (RBSESolutions.com) center O and PT is a tangent If ∠QPT = 60°, then find ∠PRQ. [CBSE 2015]
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 17
Solution : From figure,
OP ⊥ PT i.e. ∠OPT = 90°
∠OPQ = ∠OPT – ∠QPT
∠OPQ = 90° – 60°
= 30°
In ΔOPQ, (equal radii of circle)
∠OQP = ∠OPQ = 30°
(Opposite angles are equal to equal sides)
Now
∠OQP + ∠OPQ + ∠POQ = 180°
Sum of angles = 30° + 30° + ∠POQ = 180°
∠POQ = 180° – 60° = 120°
Exterior ∠POQ = 360° – 120° = 240°
We know that angle (RBSESolutions.com) subtended by centre of circle is tWice the angle subtended on the circumference of circle.
∠POQ = 2∠PRQ
⇒ 240° = 2∠PRQ
⇒ ∠PRQ = \(\frac { { 240 }^{ \circ } }{ 2 } \) = 120°
Hence ∠PRQ = 120°.

Question 11.
Prove that the angle between two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the center.
Solution :
Given :
A circle which has center O. PQ and PR are (RBSESolutions.com) tangents an the circle drawn from external point P of the circle.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 18
To prove : ∠ROQ + ∠QPR = 180°.
Proof : OQ is radius and PQ is tangent touches at point Q of the circle from point P.
∠OQP = 90°
[∵ Since the tangent at any point of a circle is perpendicular to the radius through the point of contact.]
Similarly ∠ORP = 90°
In quadrilateral ROQP
∠ROQ + ∠PRO + ∠OQP + ∠QPR = 360°
⇒ ∠ROQ + 90° + 90° + ∠QPR = 360°
⇒ ∠ROQ + ∠QPR = 360° – 180°
⇒ ∠ROQ + ∠QPR = 180°
So, ∠QPR, supplementary of ∠ROQ.

RBSE Solutions

Question 12.
In the given figure, a circle with center O, is (RBSESolutions.com) Inscribed in quadrilateral ABCD such that it touches the sides AB, BC, CD and AD at point P, Q, R and S respectively. If radius of circle ¡s 10 cm, BC = 38 cm, PB = 27 cm and AD ⊥ CD, then find the length of CD. [CBSE 2013]
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 19
Solution :
DR and DS are the tangents from point D and OS and OR are the radius of circle.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 20
∴ AD ⊥ OS and DR ⊥ OR (by theorem 13.1)
AD ⊥ CD (given)
In (RBSESolutions.com) quadrilateral DROS
∠D + ∠R + ∠O + ∠S = 360°
⇒ 90° + 90° + ∠O + 90° = 360°
⇒ ∠O = 360° – 270° = 90°
Similarly in quadrilateral DROS
∠D = ∠R = ∠O = ∠S = 90°
and OS = OR [radii of a circle
So, DROS is a square
So, SD = DR = 10 cm (Tangents on circle from point D.)
∵ Tangents BP and BQ on circle from point B.
∴ BP = BQ = 27 cm
CQ = BC – BQ
⇒ CQ = 38 – 27 = 11 cm
∵ CR and EQ are the tangents of circle from point C.
∴ CR = CQ
⇒ CR = 11 cm
Now CD = CR + DR
⇒ CD = 11 + 10
⇒ CD = 21 cm

Question 13.
If two tangents are drawn to (RBSESolutions.com)  a circle of radius 3 cm such that the angle between them is 60°, then find the length of each tangent. [NCERT Exemplar Problem]
Solution :
Let PQ and PR are the tangents on circle from point P. OQ and OR are the radius of circle.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 21
So, PQ ⊥ OQ and PR ⊥ OR
In right angled ∆POQ and ∆POR,
∠OQP = ∠ORP (each 90°)
hypotenuse PO = hypotenuse PO (common side)
and QQ = OR(equal radii of circle)
∴ ∆POQ = ∆POR (by RHS congruence)
⇒ ∠QPO = ∠RPO (CPCT)
⇒ ∠QPO = ∠RPO
= \(\frac { { 60 }^{ \circ } }{ 2 } \) = 30°
In right angled ∆OQP
tan 30° = \(\frac { OQ }{ PQ }\)
⇒ \(\frac { 1 }{ \sqrt { 3 } } \) = \(\frac { 3 }{ PQ }\) ⇒ PQ = 3\(\sqrt { 3 }\)
Since PQ and PQ are the tangents (RBSESolutions.com) from point P. we know that tangents to a circle from an external points are equal.
So, PR = PQ
= 3\(\sqrt { 3 }\) cm

Question 14.
In the following figure, O is the center of circle. PAQ is the tangent of circle at point A. If ∠OBA = 32°, then find the value of x and y.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 22
Solution :
In ∆OAB
∵ OA = OB (radii of a circle)
∴ ∠OBA = ∠OAB (Opposite (RBSESolutions.com) angle of the equal side of triangle)
∴ ∠OAB = 32°
⇒ ∠x = 32°
(∠OBA = 32°) …..(i)
Again, PAQ the tangent at point A of circle and OA is radius.
∴ OA ⊥ PQ
⇒ ∠OAQ = 90°
∴ ∠BAQ + ∠OAB = 90°
∴ ∠BAQ + 32° = 90° [∵ ∠OAB = 32°]
∠BAQ = 90° – 32° = 58°
∠BAQ = ∠ACB [angle made in alternate segment]
58° = ∠y
∠x = 32°, ∠y = 58°

RBSE Solutions

Question 15.
In the figure, A circle is (RBSESolutions.com) inscribed in a ∆ABC touching AB, BC and CA at P, Q and R respectively. If the length of tangent AP, BQ and CR are 3 cm, 4 cm and 35 cm respectively. Find perimeter of ∆ABC.
RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions 23
Solution :
We know that the tangents (RBSESolutions.com) drawn from an external point to a circle are euqal.
∴ AP = AR
BP = BQ
CQ = CR
∴ AP = AR = 3 cm
BP = BQ = 4 cm
and CR = CQ = 3.5 cm
AB = AP + PB
= (3 + 4) cm = 7 cm
BC = BQ + QC
= (4 + 3.5) cm = 7.5 cm
CA = AR + CR
= (3 + 3.5) cm = 6.5 cm
Perimeter of ∆ABC = (7 + 7.5 + 6.5) cm
= 21 cm

We hope the given RBSE Solutions for Class 10 Maths Chapter 13 Circle and Tangent Additional Questions will help you. If you have any query regarding Rajasthan Board RBSE Class 10 Maths Chapter 13 Circle and Tangent Additional Questions, drop a comment below and we will get back to you at the earliest.

Share this:

  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Related

Filed Under: Class 10

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Recent Posts

  • RBSE Solutions for Class 7 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 6 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 7 Maths Chapter 15 Comparison of Quantities In Text Exercise
  • RBSE Solutions for Class 6 Maths Chapter 6 Decimal Numbers Additional Questions
  • RBSE Solutions for Class 11 Psychology in Hindi Medium & English Medium
  • RBSE Solutions for Class 11 Geography in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 Hindi
  • RBSE Solutions for Class 3 English Let’s Learn English
  • RBSE Solutions for Class 3 EVS पर्यावरण अध्ययन अपना परिवेश in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 Maths in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 in Hindi Medium & English Medium

Footer

RBSE Solutions for Class 12
RBSE Solutions for Class 11
RBSE Solutions for Class 10
RBSE Solutions for Class 9
RBSE Solutions for Class 8
RBSE Solutions for Class 7
RBSE Solutions for Class 6
RBSE Solutions for Class 5
RBSE Solutions for Class 12 Maths
RBSE Solutions for Class 11 Maths
RBSE Solutions for Class 10 Maths
RBSE Solutions for Class 9 Maths
RBSE Solutions for Class 8 Maths
RBSE Solutions for Class 7 Maths
RBSE Solutions for Class 6 Maths
RBSE Solutions for Class 5 Maths
RBSE Class 11 Political Science Notes
RBSE Class 11 Geography Notes
RBSE Class 11 History Notes

Copyright © 2023 RBSE Solutions

 

Loading Comments...