RBSE Solutions for Class 10 Maths Chapter 14 रचनाएँ Ex 14.2 is part of RBSE Solutions for Class 10 Maths. Here we have given Rajasthan Board RBSE Class 10 Maths Chapter 14 रचनाएँ Exercise 14.2.
Board | RBSE |
Textbook | SIERT, Rajasthan |
Class | Class 10 |
Subject | Maths |
Chapter | Chapter 14 |
Chapter Name | रचनाएँ |
Exercise | Ex 14.2 |
Number of Questions Solved | 6 |
Category | RBSE Solutions |
Rajasthan Board RBSE Class 10 Maths Chapter 14 रचनाएँ Ex 14.2
प्रश्न 1.
निम्न में सत्य अथवा असत्य बताइए और अपने उत्तर का यदि (RBSESolutions.com) सम्भव हो तो कारण लिखिए
- समबाहु त्रिभुज के अन्तर्गत वृत्त एवं परिगत वृत्त की रचना, एक ही बिन्दु को केन्द्र मानकर की जा सकती है।
- त्रिभुज की सभी भुजाएँ उसके अन्तर्गत वृत्त को स्पर्श करती हैं।
- त्रिभुज का परिकेन्द्र उसकी एक भुजा पर स्थित होता है, जब वह त्रिभुज अधिक कोण त्रिभुज होता है।
- त्रिभुज का परिकेन्द्र त्रिभुज के अन्दर स्थित होता है जब वह न्यून कोण त्रिभुज होता है।
- त्रिभुज के अन्तर्गत वृत्त की रचना त्रिभुज की दो भुजाओं के लम्ब व समद्विभाजकों के प्रतिच्छेदों बिन्दु को ज्ञात करके की जाती है।
हल:
- सत्य, क्योंकि समबाहु त्रिभुज के अन्त:केन्द्र, परिकेन्द्र एवं लम्ब केन्द्र परस्पर सम्पाती होते हैं।
- सत्य, क्योंकि अन्तर्गत वृत्त की रचना के लिए अन्त:केन्द्र से एक भुजा पर डाले गए लम्ब को त्रिज्या मानकर करते हैं।
- असत्य, क्योंकि त्रिभुज को परिकेन्द्र केवल समकोण त्रिभुज के कर्ण पर स्थित होता है।
- सत्य
- असत्य, क्योंकि अन्त:केन्द्र की रचना त्रिभुज के दो कोणों के अर्द्धकों के प्रतिच्छेदी बिन्दु को केन्द्र मानकर की जाती है।
प्रश्न 2.
4.6 सेमी. भुजा वाले समबाहु त्रिभुज के अन्तर्गत वृत्त की रचना कीजिए। (RBSESolutions.com) क्या इसका परिकेन्द्र एवं अन्तःकेन्द्र सम्पाती है ? क्यों, कारण सहित बताइए।
हल:
रचना के पदे-
- माना त्रिभुज PQR है। अतः 4.6 सेमी. की आधार रेखा PQ खींची।
- P तथा Q से 4.6 सेमी. लम्बाई के चाप काटे। इन चापों का प्रतिच्छेद बिन्दु R है। अब R को P से व Q को मिलाकर क्रमशः PR व RO रेखा प्राप्त
की। - ∠P और 2Q की समद्विभाजित रेखाएँ खींचकर उनके परिच्छेद बिन्दु O प्राप्त किया।
- O से भुजा PO पर लम्ब OK डाला।
- O केन्द्र पर OK त्रिज्या का वृत्त खींचा। यही APQR का अभीष्ट अन्त:वृत्त होगा।
हाँ, यहाँ परिकेन्द्र एवं अन्त:केन्द्र सम्पाती है क्योंकि दिया गया त्रिभुज समबाहु त्रिभुज है और समबाहु त्रिभुज में कोणों के समद्विभाजकों का प्रतिच्छेद बिन्दु और भुजाओं के समद्विभाजकों का प्रतिच्छेद बिन्दु एक ही होता है।
प्रश्न 3.
ΔARC के अन्तर्गत वृत्त की रचना (RBSESolutions.com) कीजिए जहाँ AB = 4.6 सेमी., AC = 4.2 सेमी. एवं ∠A = 9O° है।
हल:
रचना-
- आधार रेखा AB = 4.6 सेमी. खींची।
- परकार से A पर 90° का कोण बनाया। अब A से 4.2 सेमी. लम्बाई पर चाप कोटी उस बिन्दु को। C अंकित किया।
- C से B को मिलाया।
- ∠B व 2A के समद्विभाजक खींचे जो परस्पर I पर मिलते हैं।
- I से AB पर. लम्ब IP खींचा।
- I को केन्द्र मानकर IP त्रिज्या का वृत्त खींचा जो तीनों भुजाओं को स्पर्श करता है। यही त्रिभुज ABC का अभीष्ट अन्त:वृत्त है।
प्रश्न 4.
एक त्रिभुज के परिगत वृत्त की रचना कीजिए, (RBSESolutions.com) भुजाएँ क्रमशः 10.5, 12.7, 13 सेमी. की हैं और बताइए इस त्रिभुज का परिकेन्द्र 13 सेमी. वाली भुजा पर ही क्यों स्थित है?
हल:
रचना के पद-
- सबसे पहले रेखा AB = 13 सेमी. की खींची। A बिन्दु से 10.5 सेमी. का तथा B से 12.7 सेमी. का (RBSESolutions.com) चाप परकार से भरकर काटा। दोनों चापों के
मिलान बिन्दु पर C लिख दिया। C से A व B को मिला दिया। इस प्रकार अभीष्ट त्रिभुज ABC_A बन गया। - अब भुजा AB: को समद्विभाजित किया तथा भुजा BC को समद्विभाजित किया। दोनों समद्विभाग वाली रेखाओं के मिलान बिन्दु पर O लिख दिया।
- O बिन्दु से क्रमशः बिन्दु A, B या C तक की दूरी दो परिवृत्त की त्रिज्या होगी तथा A, B या C तक की दूरी नापकर त्रिभुज ABC के परिवृत्त की रचना की। मापने पर इस वृत्त की त्रिज्या OA = OB = OC प्राप्त हुई।
यहाँ परिकेन्द्र 13 सेमी. वाली भुजा पर स्थित नहीं है। यदि यह त्रिभुज समकोण त्रिभुज होता तथा 13 सेमी. वाली भुजा कर्ण होती तब परिकेन्द्र कर्ण पर स्थित होता।
प्रश्न 5.
5 सेमी., 4.5 सेमी. एवं 7 सेमी. भुजाओं वाले त्रिभुज का परिकेन्द्र कहाँ स्थित होना (RBSESolutions.com) चाहिए की पुष्टि रचना के द्वारा कीजिए। साथ ही इसके परिगत वृत्त की भी रचना कीजिए।
हल:
रचना के पद-
- सर्वप्रथम रेखा AB = 7 सेमी. खींची।
- बिन्दु B से 5 सेमी. तथा A से / 4.5 सेमी. त्रिज्या के चाप काटकर प्रतिच्छेद AL बिन्दु C प्राप्त किया।
- A को C से तथा B को C से मिलाया। इस प्रकार AABC प्राप्त किया।
- भुजा AB तथा BC के समद्विभाजकों का प्रतिच्छेद बिन्दु O प्राप्त किया।
- बिन्दु O से त्रिभुज ABC के शीर्षों की दूरी OA = OB = OC प्राप्त की। बिन्दु O परिकेन्द्र है तथा शीर्षों A, B व C से जाने वाले वृत्त परिवृत्त को प्राप्त किया। यहाँ परिकेन्द्र त्रिभुज ABC के बाहर स्थित है।
प्रश्न 6.
AABC की रचना कीजिए जिसमें AB = 6 सेमी., BC = 4 सेमी. और ∠B = 12O° हो, त्रिभुज (RBSESolutions.com) के अन्तर्गत वृत्त की रचना कीजिए।
हल:
रचना के पद-
- सर्वप्रथम रेखा BC = 4 सेमी. खींची। बिन्दु B पर 12O° का कोण बनाया तथा कोण वाली रेखा पर 6 सेमी.. का चाप काटा। (RBSESolutions.com) वहाँ बिन्दु A लिखा A बिन्दु को C से मिलाया। इस प्रकार त्रिभुज ABC बना।
- ∠B तथा ∠C की समद्विभाजित रेखाएँ खींचकर उनको परिच्छेद बिन्दु O प्राप्त किया।
- O से भुजा AC पर B 4 सेमी.) लम्ब OK खींचा।
- O केन्द्र पर OK त्रिज्या लेकर वृत्त खींच दिया। यही अभीष्ट अन्त:वृत्त है।
We hope the RBSE Solutions for Class 10 Maths Chapter 14 रचनाएँ Ex 14.2 help you. If you have any query regarding Rajasthan Board RBSE Class 10 Maths Chapter 14 रचनाएँ Exercise 14.2 drop a comment below and we will get back to you at the earliest.
Leave a Reply