• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • RBSE Model Papers
    • RBSE Class 12th Board Model Papers 2022
    • RBSE Class 10th Board Model Papers 2022
    • RBSE Class 8th Board Model Papers 2022
    • RBSE Class 5th Board Model Papers 2022
  • RBSE Books
  • RBSE Solutions for Class 10
    • RBSE Solutions for Class 10 Maths
    • RBSE Solutions for Class 10 Science
    • RBSE Solutions for Class 10 Social Science
    • RBSE Solutions for Class 10 English First Flight & Footprints without Feet
    • RBSE Solutions for Class 10 Hindi
    • RBSE Solutions for Class 10 Sanskrit
    • RBSE Solutions for Class 10 Rajasthan Adhyayan
    • RBSE Solutions for Class 10 Physical Education
  • RBSE Solutions for Class 9
    • RBSE Solutions for Class 9 Maths
    • RBSE Solutions for Class 9 Science
    • RBSE Solutions for Class 9 Social Science
    • RBSE Solutions for Class 9 English
    • RBSE Solutions for Class 9 Hindi
    • RBSE Solutions for Class 9 Sanskrit
    • RBSE Solutions for Class 9 Rajasthan Adhyayan
    • RBSE Solutions for Class 9 Physical Education
    • RBSE Solutions for Class 9 Information Technology
  • RBSE Solutions for Class 8
    • RBSE Solutions for Class 8 Maths
    • RBSE Solutions for Class 8 Science
    • RBSE Solutions for Class 8 Social Science
    • RBSE Solutions for Class 8 English
    • RBSE Solutions for Class 8 Hindi
    • RBSE Solutions for Class 8 Sanskrit
    • RBSE Solutions

RBSE Solutions

Rajasthan Board Textbook Solutions for Class 5, 6, 7, 8, 9, 10, 11 and 12

  • RBSE Solutions for Class 7
    • RBSE Solutions for Class 7 Maths
    • RBSE Solutions for Class 7 Science
    • RBSE Solutions for Class 7 Social Science
    • RBSE Solutions for Class 7 English
    • RBSE Solutions for Class 7 Hindi
    • RBSE Solutions for Class 7 Sanskrit
  • RBSE Solutions for Class 6
    • RBSE Solutions for Class 6 Maths
    • RBSE Solutions for Class 6 Science
    • RBSE Solutions for Class 6 Social Science
    • RBSE Solutions for Class 6 English
    • RBSE Solutions for Class 6 Hindi
    • RBSE Solutions for Class 6 Sanskrit
  • RBSE Solutions for Class 5
    • RBSE Solutions for Class 5 Maths
    • RBSE Solutions for Class 5 Environmental Studies
    • RBSE Solutions for Class 5 English
    • RBSE Solutions for Class 5 Hindi
  • RBSE Solutions Class 12
    • RBSE Solutions for Class 12 Maths
    • RBSE Solutions for Class 12 Physics
    • RBSE Solutions for Class 12 Chemistry
    • RBSE Solutions for Class 12 Biology
    • RBSE Solutions for Class 12 English
    • RBSE Solutions for Class 12 Hindi
    • RBSE Solutions for Class 12 Sanskrit
  • RBSE Class 11

RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3

February 20, 2019 by Veer Leave a Comment

RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3 is part of RBSE Solutions for Class 10 Maths. Here we have given Rajasthan Board RBSE Class 10 Maths Chapter 2 वास्तविक संख्याएँ Exercise 2.3.

Board RBSE
Textbook SIERT, Rajasthan
Class Class 10
Subject Maths
Chapter Chapter 2
Chapter Name वास्तविक संख्याएँ
Exercise Exercise 2.3
Number of Questions Solved 3
Category RBSE Solutions

Rajasthan Board RBSE Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3

प्रश्न 1.
प्रमाणित कीजिए कि \(5-\sqrt { 3 } \) एक अपरिमेय संख्या है।
हल:
\(5-\sqrt { 3 } \) एक अपरिमेय संख्या के विपरीत मान (RBSESolutions.com) लें कि 5-3 एक परिमेय संख्या है, तो इस प्रकार के दो सह-अभाज्य पूर्णांक a और b विद्यमान होंगे कि
RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3 1
यह इस तथ्य का विरोध करता है कि 3 एक अपरिमेय संख्या है। अतः प्रारम्भ में ली गई परिकल्पना गलत है।
अतः \(5-\sqrt { 3 } \) एक अपरिमेय संख्या है।

RBSE Solutions

प्रश्न 2.
सिद्ध कीजिए कि निम्नलिखित संख्याएँ अपरिमेय संख्याएँ हैं
(i) \(\frac { 1 }{ \sqrt { 2 } } \)
(ii) \(6+\sqrt { 2 } \)
(iii) \(3\sqrt { 2 } \)
हल:
(i) \(\frac { 1 }{ \sqrt { 2 } } \)
प्रश्न में दिए गए कथन के विपरीत (RBSESolutions.com) माना कि \(\frac { 1 }{ \sqrt { 2 } } \) एक परिमेय संख्या है।
अंतः हम अविभाज्य पूर्णांक a और B (b ≠ 0) प्राप्त कर सकते हैं अर्थात्
RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3 2
क्योंकि दो पूर्णांकों का भागफल एक परिमेय संख्या होती है।
अतः \(\frac { 2a }{ b } \) = एक परिमेय संख्या
(i) से \(\sqrt { 2 } \) भी एक परिमेय संख्या है। परन्तु यह कथन असत्य है। अर्थात् हमारी कल्पना असत्य है। अतः \(\frac { 1 }{ \sqrt { 2 } } \) एक अपरिमेय संख्या है। (इतिसिद्धम् )

(ii) \(6+\sqrt { 2 } \)
माना कि \(6+\sqrt { 2 } \) एक परिमेय संख्या है। अतः हम ऐसी सह-अभाज्य संख्याएँ a और b (b ≠ 0) ज्ञात कर सकते हैं कि
RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3 3
चूँकि a तथा b पूर्णांक हैं अतः \(\frac { a-6b }{ b } \) भी एक पूर्णांक संख्या होगी क्योंकि पूर्णांकों की बाकी तथा पूर्णांकों का भाग भी पूर्णांक होता है। अर्थात्
RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3 4
परिमेय संख्या परन्तु यह कथन कि \(\sqrt { 2 } \) एक अपरिमेय (RBSESolutions.com) संख्या होती है, का विरोधाभासी कथन है। अत: हमारी कल्पना असत्य है। अर्थात् \(6+\sqrt { 2 } \) एक अपरिमेय संख्या है।

(इतिसिद्धम्)

(iii) \(3\sqrt { 2 } \)
माना कि दी गई संख्या \(3\sqrt { 2 } \) एक परिमेय संख्या है। अतः हम ऐसे दो पूर्णाक a और B (b ≠ 0) प्राप्त कर सकते हैं कि
RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3 5
चूँकि (i) में a, 3 और b सभी पूर्णांक हैं तथा दो (RBSESolutions.com) पूर्णांकों का भाग भी एक परिमेय संख्या होती है। अर्थात्
\(\frac { a }{ 3b } \) = एक परिमेय संख्या
अतः (i) से \(\sqrt { 2 } \) = एक परिमेय संख्या
जो कि कथन \(3\sqrt { 2 } \) एक अपरिमेय संख्या है, का विरोधाभासी कथन है। अर्थात् हमारी कल्पना असत्य है। अत: \(3\sqrt { 2 } \) एक अपरिमेय संख्या है।

RBSE Solutions

(इतिसिद्धम् )

प्रश्न 3.
यदि p और q अभाज्य धनात्मक पूर्णांक हैं, (RBSESolutions.com) तो सिद्ध कीजिए कि \(\sqrt { p } +\sqrt { q } \) एक अपरिमेय संख्या है।
हल:
\(\left( \sqrt { p } +\sqrt { q } \right) \) एक अपरिमेय संख्या के विपरीत यह मान लें कि
\(\left( \sqrt { p } +\sqrt { q } \right) \) एक परिमेय संख्या है, तो इस प्रकार के दो सह-अभाज्य पूर्णांक a और b विद्यमान हैं, कि
RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3 6

RBSE Solutions

We hope the RBSE Solutions for Class 10 Maths Chapter 2 वास्तविक संख्याएँ Ex 2.3 help you. If you have any query regarding Rajasthan Board RBSE Class 10 Maths Chapter 2 वास्तविक संख्याएँ Exercise 2.3, drop a comment below and we will get back to you at the earliest.

Share this:

  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Related

Filed Under: Class 10

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Recent Posts

  • RBSE Solutions for Class 7 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 6 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 7 Maths Chapter 15 Comparison of Quantities In Text Exercise
  • RBSE Solutions for Class 6 Maths Chapter 6 Decimal Numbers Additional Questions
  • RBSE Solutions for Class 11 Psychology in Hindi Medium & English Medium
  • RBSE Solutions for Class 11 Geography in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 Hindi
  • RBSE Solutions for Class 3 English Let’s Learn English
  • RBSE Solutions for Class 3 EVS पर्यावरण अध्ययन अपना परिवेश in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 Maths in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 in Hindi Medium & English Medium

Footer

RBSE Solutions for Class 12
RBSE Solutions for Class 11
RBSE Solutions for Class 10
RBSE Solutions for Class 9
RBSE Solutions for Class 8
RBSE Solutions for Class 7
RBSE Solutions for Class 6
RBSE Solutions for Class 5
RBSE Solutions for Class 12 Maths
RBSE Solutions for Class 11 Maths
RBSE Solutions for Class 10 Maths
RBSE Solutions for Class 9 Maths
RBSE Solutions for Class 8 Maths
RBSE Solutions for Class 7 Maths
RBSE Solutions for Class 6 Maths
RBSE Solutions for Class 5 Maths
RBSE Class 11 Political Science Notes
RBSE Class 11 Geography Notes
RBSE Class 11 History Notes

Copyright © 2023 RBSE Solutions

 

Loading Comments...