• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • RBSE Model Papers
    • RBSE Class 12th Board Model Papers 2022
    • RBSE Class 10th Board Model Papers 2022
    • RBSE Class 8th Board Model Papers 2022
    • RBSE Class 5th Board Model Papers 2022
  • RBSE Books
  • RBSE Solutions for Class 10
    • RBSE Solutions for Class 10 Maths
    • RBSE Solutions for Class 10 Science
    • RBSE Solutions for Class 10 Social Science
    • RBSE Solutions for Class 10 English First Flight & Footprints without Feet
    • RBSE Solutions for Class 10 Hindi
    • RBSE Solutions for Class 10 Sanskrit
    • RBSE Solutions for Class 10 Rajasthan Adhyayan
    • RBSE Solutions for Class 10 Physical Education
  • RBSE Solutions for Class 9
    • RBSE Solutions for Class 9 Maths
    • RBSE Solutions for Class 9 Science
    • RBSE Solutions for Class 9 Social Science
    • RBSE Solutions for Class 9 English
    • RBSE Solutions for Class 9 Hindi
    • RBSE Solutions for Class 9 Sanskrit
    • RBSE Solutions for Class 9 Rajasthan Adhyayan
    • RBSE Solutions for Class 9 Physical Education
    • RBSE Solutions for Class 9 Information Technology
  • RBSE Solutions for Class 8
    • RBSE Solutions for Class 8 Maths
    • RBSE Solutions for Class 8 Science
    • RBSE Solutions for Class 8 Social Science
    • RBSE Solutions for Class 8 English
    • RBSE Solutions for Class 8 Hindi
    • RBSE Solutions for Class 8 Sanskrit
    • RBSE Solutions

RBSE Solutions

Rajasthan Board Textbook Solutions for Class 5, 6, 7, 8, 9, 10, 11 and 12

  • RBSE Solutions for Class 7
    • RBSE Solutions for Class 7 Maths
    • RBSE Solutions for Class 7 Science
    • RBSE Solutions for Class 7 Social Science
    • RBSE Solutions for Class 7 English
    • RBSE Solutions for Class 7 Hindi
    • RBSE Solutions for Class 7 Sanskrit
  • RBSE Solutions for Class 6
    • RBSE Solutions for Class 6 Maths
    • RBSE Solutions for Class 6 Science
    • RBSE Solutions for Class 6 Social Science
    • RBSE Solutions for Class 6 English
    • RBSE Solutions for Class 6 Hindi
    • RBSE Solutions for Class 6 Sanskrit
  • RBSE Solutions for Class 5
    • RBSE Solutions for Class 5 Maths
    • RBSE Solutions for Class 5 Environmental Studies
    • RBSE Solutions for Class 5 English
    • RBSE Solutions for Class 5 Hindi
  • RBSE Solutions Class 12
    • RBSE Solutions for Class 12 Maths
    • RBSE Solutions for Class 12 Physics
    • RBSE Solutions for Class 12 Chemistry
    • RBSE Solutions for Class 12 Biology
    • RBSE Solutions for Class 12 English
    • RBSE Solutions for Class 12 Hindi
    • RBSE Solutions for Class 12 Sanskrit
  • RBSE Class 11

RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

June 13, 2019 by Fazal Leave a Comment

Rajasthan Board RBSE Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 1.
10th term of series – 4, – 1, + 2, + 5, … is :
(a) 23
(b) – 23
(c) 32
(d) – 32
Solution:
-4, -1, + 2, + 5, …
Here a = – 4
d = (- 1) – (- 4) = – 1 + 4 = 3
10th term = T1o
= a + 9d
= -4 + 9 × 3
= – 4 + 27 = 23
Hence, option (a) is correct.

Question 2.
9th term of A.P. is 35 and 19th term is 75, then 20th term will be :
(a) 78
(b) 79
(c) 80
(d) 81
Solution:
Given,
T9 = 35
⇒ a + 8d = 35 …(i)
and T19 = 75
⇒ a + 18d = 75 …(ii)
Subtracting equation (i) from equation (ii),
10d = 40 ⇒ d = 4
Put d = 4 in equation (i),
a + 8 × 4 = 35
⇒ a + 32 = 35
⇒ a = 35 – 32 = 3 ⇒ a = 3
Thus, 20th term = T20
= a + 19 d
= 3 + 19 × 4 = 3 + 76 = 79
Hence, option (b) is correct.

Question 3.
Sum of n terms of series 1, 3, 5, … is :
(a) (n – 1)2
(b)(n + 1)2
(c) (2n – 1)2
(d) n2
Solution:
1,3,5, …
nth term of the given series
Tn = 2n – 1
Sum of n terms
sn = ∑(2n – 1)
= 2∑n – ∑1
= 2 \(\frac { n(n+1) }{ 2 } \) – n
= n2 + n – n = n2
Hence, option (d) is correct.

Question 4.
If first term of A.P. is 5, last term is 45 and sum of terms is 400, then numbers of terms is :
(a) 8
(b) 10
(c) 16
(d) 20
Solution:
Given, a = 5, l = 45, sn = 400
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Hence, option (c) is correct.

Question 5.
If 3rd term of A.P. is 18 and 7th term is 30 then sum of first 17 terms will be :
(a) 600
(b) 612
(c) 624
(d) 636
Solution:
Given T3 = a + 2d
⇒ a + 2 d = 18 …(i)
and T7 = a + 6d
a + 6d = 30 …(ii)
From equation (i) and (ii),
4d = 12 ⇒ d = 3
Putting d = 3 in equation (i),
a + 2 × 3 = 18
⇒ a + 6 = 18
⇒ a = 12
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Hence, option (b) is correct.

Question 6.
If (x + 1), 3x, (4x + 2) are in A.P., then 5th term will be :
(a) 14
(b) 19
(c) 24
(d) 28
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Common difference,
d = 3x – (x + 1)
= 3 × 3 – (3 + 1)
= 9 – 4 = 5
∴ 5th term = a + 4d
= 4 + 4 × 5
= 4 + 20 = 24
Hence, option (c) is correct.

Question 7.
a, b, c are in A.P., A.M. of a and b is x, A.M. of b and c is y, then A.M. of x and y will be :
(a) a
(b) b
(c) c
(d) a + c
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
a, x, b, y, c are in AP., A.M. of x and y is b
Hence option (b) is correct.

Question 8.
Sum of n terms of A.P. is 3n2 + 5n its 27th term is:
(a) 160
(b) 162
(c) 164
(d) 166
Solution:
If Sn – 3n2 + 5n
Then, nth term
Tn = sn– sn-1
= (3n2 + 5n) – [3(n – 1)2 + 5(n – 1)]
= (3n2 + 5n) – [3(n2 + 1 – 2n) + 5n – 5]
= 3n2 + 5n – [3n2 + 3 – 6n + 5n – 5]
= 3n2 + 5n – 3n2 + n + 2
= 6n + 2
Put n = 27
T27 = 6 × 27 + 2
= 162 + 2 = 164
Hence, option (c) is correct.

Question 9.
Sum of 50 A.M. between 20 and 30 is :
(a) 1255
(b) 1205
(c) 1250
(d) 1225
Solution:
First term, a = 20
Last term, l = 30
Number of terms = 52
Sum of 52 terms
S52 = \(\frac { 52 }{ 2 } \) (20 + 30)
= 26 × 50 = 1300
Thus, sum of 50 A.M. between 20 and 30 is
= 1300 – 20 – 30
= 1300 – 50 = 1250
Hence, option (c) is correct.

Question 10.
Common ratio of GP.
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Hence, option (a) is correct.

Question 11.
Number of terms in GP. 96, 48, 24,12, … \(\frac { 3 }{ 16 } \) is –
(a) 8
(b) 10
(c) 12
(d) 15
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 12.
Value of 91/3 × 91/9 × 91/27 × … ∞-
(a) 1
(b) 3
(c) 9
(d) 27
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 13.
Sum of infinite terms of series
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 14.
Sum of infinite terms of series
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 15.
If third term of GP. is 2, then product of its first five terms is :
(a) 4
(b) 16
(c) 32
(d) 64
Solution:
Given : Let first five terms of GP. are
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 16.
For which value of n, expression
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
will be GM. between a and b :
(a) 1
(b) 2
(c) 0
(d) – \(\frac { 1 }{ 2 } \)
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Or a2n+2 + b2n+2 + 2an+1 bn+1
= ab [a2n + b2n + 2anbn]
Or a2n a2 + b2n b2 + 2ab.anbn = ab[a2n + b2n + 2anbn]
Or a2na2 – ab.a2n + b2nb2 – ab.b2n
+ 2ab.anbn – 2ab.anbn = 0
Or a2n a(a-b) + b2n b(b-a) = 0
⇒ a2n+1 (a-b) – b2n+1 (a-b) = 0
Or (a-b) [a2n+1 – b2n+1] = 0
Or a2n+1 = b2n+1
[if a ≠ b ⇒ a – b ≠ 0]
Or \(\frac { { a }^{ 2n+1 } }{ { b }^{ 2n+1 } } \) = 1
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Comparing powers of both sides
2n + 1 = 0
Or n = – \(\frac { 1 }{ 2 } \)
Thus, value of n = – \(\frac { 1 }{ 2 } \)
Hence option (d) is correct

Question 17.
If G1 and G2 are two GM between a and b then value of G1G2 is :
(a) \(\sqrt { ab }\)
(b) ab
(c) (ab)2
(d) (ab)3
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 18.
GM. between – 9 and – 4 :
(a) – 36
(b) 6
(c) – 6
(d) 36
Solution:
Let GM. between – 9 and – 4 is G then
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 19.
Series \(\frac { 1 }{ 2 } \),\(\frac { 5 }{ 13 } \),\(\frac { 5 }{ 16 } \), …. is
(a) A.P.
(b) GP.
(c) H.P.
(d) Other
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 20.
6th term of series 1,\(\frac { 1 }{ 4 } \),\(\frac { 1 }{ 7 } \),\(\frac { 1 }{ 10 } \),….. is:
(a) \(\frac { 1 }{ 13 } \)
(b) \(\frac { 1 }{ 16 } \)
(c) \(\frac { 1 }{ 15 } \)
(d) None of these
Solution:
The given series is a H.P. because the corresponding A.P. will be 1, 4, 7, 10,…. In which
a = 1, d = 4 – 1 = 3
∴ If 6th term a6 = a + 5d
= 1 + 5 × 3 = 1 + 15 = 16
Thus, 6th term of corresponding H.P. is \(\frac { 1 }{ 16 } \).
Hence, option (b) is correct.

Question 21.
If a, b, c,d are in H.P., then true statement is
(a) ab > cd
(b) ac > bd
(c) ad > be
(d) None of these
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 22.
If H.M. of two numbers is 4, A.M. and GM. is G if 2A + G2 = 27, then numbers are :
(a) 6, 4
(b) 8,2
(c) 8, 6
(d) 6, 3
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
solving equations (i) and (ii), we get a = 6, b = 3
Hence, option (d) is correct.

Question 23.
If ratio of H.M. and GM. of two numbers is 12 : 13, then ratio of numbers will be :
(a) 1 : 2
(b) 2 : 3
(c) 3 : 5
(d) 4 : 9
Solution:
Let two numbers are a and b. Then its H.M.
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 24.
If A, G, H are A.M., GM. and H.M. respectively, between two numbers a and b then A, G, H, will be :
(a) In H.P.
(b) In GP.
(c) In A.P.
(d) None of these
Solution:
Relation in A, G, H is G = \(\sqrt { AH }\)
G2 = AH
From this, it is clear that, A, G H will be in GP.
Hence, option (b) is correct.

Question 25.
If H be H.M. between numbers a and b, then value of \(\frac { H }{ a } \) + \(\frac { H }{ b } \) is :
(a) 2
(b) \(\frac { a+b }{ ab } \)
(c) \(\frac { ab }{ a+b } \)
(d) None of these
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 26.
If a, b, c are in H.P., then correct statement is –
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
H.M. of a, b, c
H = \(\frac { 2ac }{ a+c } \) ….(i)
G.M. of a,b,c
G = \(\sqrt { ac }\) ….(ii)
From equation (i) and (ii),
b = \(\frac { 2ac }{ a+c } \)
We know that GM. > H.M.
G > H
\(\sqrt { ac }\) > b
Hence, option (c) is correct

Question 27.
If nth term of any series is \(\frac { { n }^{ 2 } }{ { 3 }^{ n } } \) then write first 3 terms of series.
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 28.
Which term of progression 72,70,68, 66, is …….. 40 ?
Solution:
Here a = 72, d = 70 – 72 = – 2
Let nth term is 40, then
Tn =40
⇒ a + (n – 1) d = 40
⇒ 72 + (n – 1) × (- 2) = 40
⇒ – 2 (n – 1) = 40 – 72
⇒ -2 (n-1) = -32
⇒ n – 1 = 16
n = 17
Hence, 17th term of the progression is 40.

Question 29.
If in an A.P., sum of m and n terms are in ratio m2 : n2, then prove that ratio of mth and nth term will be (2m – 1) ; (2n – 1).
Solution:
Let first term of A.P. is a and common difference is d, then
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 30.
If sides of any right angled triangle are in A.P., then find the ratio of length of their sides.
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
Let sides of right angled triangle are
a – d, a, a + d
By Pythagoras theorem
(a + d)2 – (a – d)2 + a2
(∵ hypotenuse is longest side)
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 31.
– \(\frac { 2 }{ 7 } \), a, – \(\frac { 7 }{ 2 } \) are in G.P., then find value of a.
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 32.
Find sum of n terms of series 1 – 1 + 1 – 1 + …..
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 33.
Find the value of 32.
21/2.41/8.161/32…∞
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 34.
For which value of n, expression ?
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
will be H.M. of two numbers a and b ?
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 35.
If A and Hare A.M. and H.M. between a and b, then prove that
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 36.
If a, b, c are in A.P. and b, c, d are in H.P., then prove that ad = bc.
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 37.
If a + b … + l are in GP., then prove that its
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 38.
Find the sum of n terms of sequence 3, 33, 333,… .
Solution:
It is clear that the given series is not in GP. but it can be related to GP. by writting it in the following form
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 39.
Find the sum of sequence made by product of corresponding terms of sequence 1, 2, 4, 8, 16, 32 and sequence
32, 8, 2, \(\frac { 1 }{ 2 } \), \(\frac { 1 }{ 8 } \), \(\frac { 1 }{ 32 } \)
Solution:
Sequence made by product of corresponding terms of sequence 1, 2, 4, 8, 16, 32 and sequence 32, 8, 2,
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 40.
Find the value of n so that
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
is G.M. between a and b.
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 41.
If G1 and G2 are two geometric mean between a and b, then prove that G1,G2 = ab
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 42.
If arithmetic mean (A.M.) and geometric mean (GM.) of any two numbers a and b are in ratio m : n, then prove that
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 43.
A.M. of two numbers is 50 and H.M. is 18,find the numbers.
Solution:
Let a and b are two numbers, then
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 44.
The difference between A.M. and GM. of two numbers is 2, difference between GM. and H.M. is 1.2. Find the numbers.
Solution:
According to question,
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 45.
If a, b, c are in A.P., x,y, z are in H.P. and ax, by, cz are in GP. then prove that:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
Solution:
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

Question 46.
A1,A2, are two A.M. between two positive numbers a and b two GM. G1, G2 and two H.M. H1, H2, then prove that :
A1H2 = A2H1 = G1G2 = ab
Solution:
Let two numbers are a and b, then
A1, A2 are two A.M. between a and b, then
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise
RBSE Solutions for Class 11 Maths Chapter 8 Sequence, Progression, and Series Miscellaneous Exercise

RBSE Solutions for Class 11 Maths

Share this:

  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Related

Filed Under: Class 11

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Recent Posts

  • RBSE Solutions for Class 7 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 6 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 7 Maths Chapter 15 Comparison of Quantities In Text Exercise
  • RBSE Solutions for Class 6 Maths Chapter 6 Decimal Numbers Additional Questions
  • RBSE Solutions for Class 11 Psychology in Hindi Medium & English Medium
  • RBSE Solutions for Class 11 Geography in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 Hindi
  • RBSE Solutions for Class 3 English Let’s Learn English
  • RBSE Solutions for Class 3 EVS पर्यावरण अध्ययन अपना परिवेश in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 Maths in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 in Hindi Medium & English Medium

Footer

RBSE Solutions for Class 12
RBSE Solutions for Class 11
RBSE Solutions for Class 10
RBSE Solutions for Class 9
RBSE Solutions for Class 8
RBSE Solutions for Class 7
RBSE Solutions for Class 6
RBSE Solutions for Class 5
RBSE Solutions for Class 12 Maths
RBSE Solutions for Class 11 Maths
RBSE Solutions for Class 10 Maths
RBSE Solutions for Class 9 Maths
RBSE Solutions for Class 8 Maths
RBSE Solutions for Class 7 Maths
RBSE Solutions for Class 6 Maths
RBSE Solutions for Class 5 Maths
RBSE Class 11 Political Science Notes
RBSE Class 11 Geography Notes
RBSE Class 11 History Notes

Copyright © 2023 RBSE Solutions

 

Loading Comments...