Rajasthan Board RBSE Class 11 Maths Chapter 9 Logarithms Miscellaneous Exercise
Question 1.
log√2x = 4 then value of x will be :
(A) 4√2
(B) \(\frac { 1 }{ 4 }\)
(C) 4
(D) 4 x √2
Solution :
∵ loga n = x
∴ ax = n
Given log√2x= 4
Then (√2)4 = x
⇒ x = (√2)4 = (21/2 )4 = 22 = 4
Hence, option (C) is correct.
Question 2.
logx 243 = 2.5, then value of x will be :
(A) 9
(B) 3
(C) 1
(D) 81
Solution:
∵ logan = x
⇒ ax = n
Similarly logx 243 = 2.5
⇒ 243 = x2.5
⇒ x5/2 = 243 = (3)5
Squaring on both sides,
(x5/2)2 = {(3)5}2
⇒ x5/2 = (32)2
On comparing, x = 32 = 9
Hence, option (A) is correct.
Question 3.
The value of log (1 + 2 x 3):
(A) 2 log 3
(B) log 1.log 2.log 3
(C) log1 + log2 + log3
(D) log 7
Solution:
log (1 + 2 x 3) = log (1 + 6) = log 7
Hence, option (D) is correct.
Question 4.
The value of log (m + n) is :
(A) log m + log n
(B) log mn
(C) log m x log n
(D) none of these
Solution:
log m + log n = log mn ≠ log (m + n)
log mn = log m + log n ≠ log (m + n)
log m x log n ≠ log (m + n)
Hence, option (D) is correct.
Question 5.
The value of logba.logcb.logac is :
(A) 0
(B) log abc
(C) 1
(D) log (aa bb cc)
Solution:
logbo.logc6.logac
Hence, option (C) is correct.
Question 6.
If a > 1 then value of loga 0 is :
(A) – ∞
(B) ∞
(C) 0
(D) 1
Solution:
loga0 = – ∞
If a > 1
Hence, option (A) is correct.
Question 7.
If a < 0 then value of loga0 is :
(A) – ∞
(B) ∞
(C) 0
(D) 1
Solution:
log 0 = ∞
If a < 0
Hence, option (B) is correct.
Question 8.
Other form of Iogab :
(A) ab
(B) ba
(C) \(\frac { 1 }{ { log }_{ b }a } \)
(D) loga b
Solution:
Hence option (C) is correct.
Question 9.
Number log27 is :
(A) Integer
(B) Rational
(C) Irrational
(D) Prime
Solution:
log2 7 = x
7 = 2x
Taking log on both sides,
log 7 = log 2x
⇒ x log 2 = log 7
= 2.8076
= irrational number
Hence, option (C) is correct.
Question 10.
If a = log3 5 and b = log7 25 then correct option is :
(A) a < b
(B) a > b
(C) a = b
(D) none of these
Solution:
Hence, option (A) is correct.
Question 11.
If log2 x + log2 (x – 1) = 1, then find the value of x.
Solution:
log2x + log2(x – 1) = 1
⇒ log2 x(x – 1) = 1
⇒ x(x – 1) = 21
⇒ x2 – x – 2 = 0
⇒ x2 – 2x + x – 2 = 0
⇒ (x – 2) (x + 1) = 0
⇒ x = 2, x = – 1
Negative value for algorithm is not possible
∴ x = 2
Question 12.
If log (a- b) = log a – log b, then what will be value of a in terms of b?
Solution:
log (a – b) = log a – log b
⇒ log (a – b) = log(\(\frac { a }{ b }\))
Comparing on both sides,
⇒ a – b = \(\frac { a }{ b }\)
⇒ b(a -b) = a
⇒ ab – b2 = a
⇒ ab – a = b2
⇒ a(b – 1) = b2
⇒ a = b2/b – 1
Hence, value of a in terms of b is b2/b – 1.
Question 13.
If , then find relation among a,b and c.
Solution:
According to question,
⇒ logxa + logxc= 2 logxb
⇒ logx(ac) = logx(b)2
On comparing, ac = b2 or b2 = ac
Hence, a, b, c are in G.P. and G.M. between a and c is b.
Question 14.
If log 2 = 0.3010, then find the value of log 200.
Solution:
log 2 = 0.3010 ……… (i)
log 200= log (2 x 102)
= log 2 + log 102
= log 2 + 2 log 10
= 0.3010 + 2 x 1
= 2 + 0.3010
= 2.3010
Hence, log 200 = 2.3010
Question 15.
Find the value of log 0.001.
Solution:
= log (10-3) = -3 log 10
= -3 x 1 = -3 or 3
Question 16.
If log 7 = 0.8451 and log 3 = 0.4771, then find log (21)5.
Solution:
Given, log 7 = 0.8451 and log 3 = 0.4771
log (21)5 = log (3 x 7)5
= 5 log (3 x 7)
= 5 log 3 + 5 log 7
= 5 x 0.4771 + 5 x 0.8451
= 2.3855 + 4.2255
= 6.6110
Hence, log (21)5 = 6.6110
Question 17.
Find the value of log 6 + 2 log 5 + log 4 – log 3 – log 2.
Solution:
log 6 + 2 log 5 + log 4 – log 3 – log 2
= (log 6 + log 52 + log 4) – (log 3 + log 2)
= log (6 x 52 x 4) – log 3 x 2
= log (52 x 4)
= log (25 x 4) = log 100 = 2
Hence, log 6 + 2 log 5 + log 4 – log 3 – log 2 = 2
Question 18.
, then find the value of x.
Solution:
On comparing,
x = 100
Hence, x=100
Question 19.
Prove that:
log10 tan 1°. log10 tan 2°……. log10 tan 89° = 0
Solution :
L.H.S.
= log10 tan 1°. log10 tan 2°…. log10 tan 45° log10 tan 89°
= log10 tan 1°. log10 tan 2°…. log10 (1)…. log10 tan 89°
= log10tan 1°- log10 tan 2°…. x 0 x…. log10 tan 89°
= 0
= R.H.S. Hence Proved.
Question 20.
Prove that:
log34 . log45 . log5 6 . log67 . log78. log8 9 = 2
Solution:
L.H.S.
= (log34 – log45)- (log56 . log67) (log78- log89)
= (log35 x log5 7) x log7 9
= log37 x log79
= log39 = log332
= 2 x 1= R.H.S. Hence Proved.
Question 21.
If log 52.04 = 1.7163, log 80.65 = 1.9066 and log 9.753 = 0.9891, then find the value of
Solution:
Given,
log 52.04= 1.7163
log 80.65 = 1.9066
log 9.753 = 0.9891
= log (52.04 x 80.65) – log 9.753
= log 52.04 + log 80.65 – log 9.735
= 1.7163 + 1.9066-0.9891
= 3.6229 – 0.9891
= 2.6338
Question 22.
If log 32.9= 1.5172, log 568.1 = 2.7544 and log 13.28 = 1.1232, then find the value of
.
Solution:
Given, log 32.9 = 1.5172, log 568.1 =2.7544 and log 13.28 = 1.1232
= log (13.28)3 – log (32.9 x 568.1)
= 3 log 13.28 – log 32.9 – log 568.1
= 3 x 1.1232 – 1.5172-2.7544
= 3.3696-4.2716
= – 0.9020 = – 1 + 0.0980
= 1 + 0.098 = 1.0980
Question 23.
log 2 = 0.3010 and log 3 = 0.4771, then find the value of log (0.06)6
Solution:
Given,
log 2 = 0.3010 and log 3 = 0.4771
= log (6 x 10-2)6
= 6 log (2 x 3 x 10-2)
= 6 log 2 + 6 log 3 – 12 log 10
= 6 x 0.3010 + 6 x 0.4771 – 12 x 1
= 1.8060 + 2.8626 – 12
= 4.6686 – 12 = -7.3314
= – 8 + 0.6686
= \(\overline { 8 }\) + 0.6686 = \(\overline { 8 }\) .6686
Hence,
log (0.06)6 = \(\overline { 8 }\) .6686 or -7.3314
Question 24.
Prove that:
Solution:
Question 25.
in the sum and difference of logarithm.
Solution:
= log (11)3 – log{(5)7 x (7)5}
= 3 log 11 – log (5)7 – log (7)5
= 3 log 11 – 7 log 5 – 5 log 7
Question 26.
(a) If antilog 1.5662 = 36.83, then find the value of the following :
(i) antilog \(\overline { 1 }\).5662
(ii) antilog 2.5662
(iii) antilog \(\overline { 2 }\).5662
(b) Find the value of antilog (log x).
Solution:
(a) Given, antilog 1.5662 = 36.83
(i) ∵ Mantissa of 1.5662 and j.5662 are same. So, anitlog of two number will be same digit numbers.
Now, characteristics of which number is 1 then there will be no zero after decimal point in antilog.
∴ Required antilog \(\overline { 1 }\).5662 = 0.3683.
(ii) ∵ Mantissas of 1.5662 and 2.5662 are same. So, antilog of two numbers will be same digit number.
Now, characteristic of which number is 2 then decimal point will be after 3 digit in antilog.
∴ Required anitlog 2.5662 = 368.3.
(iii) ∵ Mantìssa of 1.5662 and \(\overline { 2 }\).5662 are same. So. antilog of two numbers will be same digit number.
Now, characteristic of which number is \(\overline { 2 }\) then there will be one zero after decimal point in anitlog.
∴ Required antilog \(\overline { 2 }\).5662 = 0.03683.
(b) antilog and log are opposite to each other.
∴ antilog (log x) x.
Question 27.
Find (17)1/2 whereas log17 = 1.2304 and antilog 0.6152 = 4.123.
Solution:
Let(17)1/2 = x
Taking log on both sides,
log (17)1/2 = logx
⇒ log1/2 = logx
⇒ \(\frac { 1 }{ 2 }\) log17 = log x
⇒ log x = 0.6152
Taking antilog on both sides,
antilog (log x) = antilog 0.6152
⇒ x = 4.123
Hence, (17)1/2 = 4.123
Question 28.
l0g10 = 0.4771, then find log10 0.027.
Solution:
Given,
log103 = 0.4771
log10 0.027 = log( \(\frac { 27 }{ 1000 }\))
= log10 (27 x 10-3)
= log10 (33x 10-3)
= log10(3)3 + log10 (10)-3
= 3 log103 – 3 log1010
= 3 x 0.4771 – 3 x 1
= 1.4313 – 3
= – 1.5687
= -2 + 0.4313
= \(\overline { 2 }\) + 0.4313 = \(\overline { 2 }\).4313
Hence, log10 0.027 = latex]\overline { 2 }[/latex].4313 or – 1.5687
Question 29.
By using logarithm, find the value of
Solution:
Taking log on both sides,
⇒ log (520.4 x 8.065) – log 97.53 = logx
⇒ log 520.4 + log 8.065 – log 97.53 = logx …..(i)
⇒ 2.7163 + 0.9066 – 1.9881 = logx
⇒ 3.6229 – 1.9881 = logx
⇒ 1.6348 = logx
∴ x = antilog 1.6348 = 43.13
Question 30.
If log x – log (x – 1) = log 3, then find the value of x.
Solution:
log x – log (x – 1) = log 3
⇒ log( \(\frac { x }{ x – 1 }\)) = log 3
On comparing,
\(\frac { x }{ x – 1 }\) = 3
⇒ x = 3 (x – 1)
⇒ x = 3x – 3
⇒ 3x – x = 3
⇒ 2x = 3
⇒ x = 3/2
Hence, the value of x is 3/2.
Leave a Reply