• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • RBSE Model Papers
    • RBSE Class 12th Board Model Papers 2022
    • RBSE Class 10th Board Model Papers 2022
    • RBSE Class 8th Board Model Papers 2022
    • RBSE Class 5th Board Model Papers 2022
  • RBSE Books
  • RBSE Solutions for Class 10
    • RBSE Solutions for Class 10 Maths
    • RBSE Solutions for Class 10 Science
    • RBSE Solutions for Class 10 Social Science
    • RBSE Solutions for Class 10 English First Flight & Footprints without Feet
    • RBSE Solutions for Class 10 Hindi
    • RBSE Solutions for Class 10 Sanskrit
    • RBSE Solutions for Class 10 Rajasthan Adhyayan
    • RBSE Solutions for Class 10 Physical Education
  • RBSE Solutions for Class 9
    • RBSE Solutions for Class 9 Maths
    • RBSE Solutions for Class 9 Science
    • RBSE Solutions for Class 9 Social Science
    • RBSE Solutions for Class 9 English
    • RBSE Solutions for Class 9 Hindi
    • RBSE Solutions for Class 9 Sanskrit
    • RBSE Solutions for Class 9 Rajasthan Adhyayan
    • RBSE Solutions for Class 9 Physical Education
    • RBSE Solutions for Class 9 Information Technology
  • RBSE Solutions for Class 8
    • RBSE Solutions for Class 8 Maths
    • RBSE Solutions for Class 8 Science
    • RBSE Solutions for Class 8 Social Science
    • RBSE Solutions for Class 8 English
    • RBSE Solutions for Class 8 Hindi
    • RBSE Solutions for Class 8 Sanskrit
    • RBSE Solutions

RBSE Solutions

Rajasthan Board Textbook Solutions for Class 5, 6, 7, 8, 9, 10, 11 and 12

  • RBSE Solutions for Class 7
    • RBSE Solutions for Class 7 Maths
    • RBSE Solutions for Class 7 Science
    • RBSE Solutions for Class 7 Social Science
    • RBSE Solutions for Class 7 English
    • RBSE Solutions for Class 7 Hindi
    • RBSE Solutions for Class 7 Sanskrit
  • RBSE Solutions for Class 6
    • RBSE Solutions for Class 6 Maths
    • RBSE Solutions for Class 6 Science
    • RBSE Solutions for Class 6 Social Science
    • RBSE Solutions for Class 6 English
    • RBSE Solutions for Class 6 Hindi
    • RBSE Solutions for Class 6 Sanskrit
  • RBSE Solutions for Class 5
    • RBSE Solutions for Class 5 Maths
    • RBSE Solutions for Class 5 Environmental Studies
    • RBSE Solutions for Class 5 English
    • RBSE Solutions for Class 5 Hindi
  • RBSE Solutions Class 12
    • RBSE Solutions for Class 12 Maths
    • RBSE Solutions for Class 12 Physics
    • RBSE Solutions for Class 12 Chemistry
    • RBSE Solutions for Class 12 Biology
    • RBSE Solutions for Class 12 English
    • RBSE Solutions for Class 12 Hindi
    • RBSE Solutions for Class 12 Sanskrit
  • RBSE Class 11

RBSE Solutions for Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

May 21, 2019 by Safia Leave a Comment

Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

Question 1.
If A and B be two events such that P(A) = \(\frac { 1 }{ 4 }\); = P(B) = \(\frac { 1 }{ 2 }\) and P(A ∩ B)
= \(\frac { 1 }{ 8 }\), then find \(P(\overline { A } \cap \overline { B } )\).
(1 – P(A)] = P(B) PĀ) = P(Ā)P(B)
Solution:
Given:
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

Question 2.
If P(A) = 0.4, P(B) = p and P(A ∪ B) = 0.6 and A and B are independent events, then find the value of p.
Solution:
Given P(A) = 0.4
P(B) = p
P(A ∩ B) = 0.6
∵ A and B are independent events
So, P(A ∩ B) = P(A). P(B)
P(A ∪ B) = P(A) + P(B) – P(A ∩B)
⇒ 0.6 = 0.4 x p – P(A)P(B)
0.6 = 0.4 x p – 0.4 x p
0.2 = 0.6 x p
P = \(\frac { 0.2 }{ 0.6 }\) = \(\frac { 1 }{ 3 }\)
Hence, p = \(\frac { 1 }{ 3 }\).

Question 3.
If A and B are independent events, and P(A) = 0.3, P(B) = 0.4, then find:
(i)P(A ∩ B)
(ii)P(A ∪ B)
(iii) P(\(\frac { A }{ B }\))
(iv) P(\(\frac { B }{ A }\))
Solution :
(i) Given :
P(A) = 0.3
P(B) = 0.4
A and B are independent events
P( A ∩ B) = P(A) · P(B)
= 0.3 x 0.4 = 0.12

(ii) P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
= 0.3 + 0.4 – 0.12
= 0.7 – 0.12 = 0.58
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

Question 4.
If A and B are independent events., where P(A) = 0.3, P(B) = 0.6, then find:
(i)P(A ∩ B)
(ii) P(A ∪\(\overline { B }\))
(iii) P(A ∪ B)
(iv) P(\(\overline { A }\) ∩\(\overline { B }\))
Solution :
Given
P(A) = 0.3
P(B) = 0.6

(i) P(A ∩ B) = P(A) × P(B)
= 0.3 × 0.6
= 0.18

(ii) P(A ∪ \(\overline { B }\))
= 0.3 – 0.18
= 0.12

(iii) P(A ∪ B) = p(A) + P(B) – P(A ∩B)
= 0.3 + 0.6 – 0.18
= 0.90 – 0.18

(iv) P(\(\overline { A }\) ∩ \(\overline { B }\))
= [ 1 – P(A)] [1 – P(B)]
= [1 – 0.3] [1 – 0.6]
= 0. 7 × 0.4
= 0.28

Question 5.
A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn one by one without replacement, find the probability of getting all white balls.
Solution:
Given
White ball = 5
Red ball = 7
Black ball = 8
Total number of balls = 5 + 7 + 8 = 20
∴ Probability of getting first white ball
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2
Probability of getting second white ball
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2
Probability of getting third white ball
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2
Probability of getting fourth white ball
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2
Probability of getting all white balls
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

Question 6.
A die is tossed thrice. Find the probability of getting an odd number at least once.
Solution:
Number of possible results on a die = {1, 2, 3, 4, 5, 6}
∴ Number of favourable results getting even number (2, 4, 6) = 3
∴ Probability of getting even number = \(\frac { 3 }{ 6 }\) = \(\frac { 1 }{ 2 }\)
∴ Probability of getting even number once = \(\frac { 1 }{ 2 }\)
∴ Probability of getting even number thrice = \(\frac { 1 }{ 2 } \times \frac { 1 }{ 2 } \times \frac { 1 }{ 2 } =\frac { 1 }{ 8 }\)
∴ Probability of getting at least one odd number on tossing all dice together
= 1 – \(\frac { 1 }{ 8 }\) = \(\frac { 7 }{ 8 }\)

Question 7.
Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.
Solution:
Number of black cards in a pack= 26
Total number of cards = 52
∴ Probability of getting one black card =

Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2
After drawing one black card, remaining cards are 51.
Out of them number of black cards = 25
∴ Probability of getting other black card =
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2
∴Probability of getting both black cards
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

Question 8.
Two coins are tossed. What is the probability of coming up two heads if it is known that at least one head comes up ?
Solution:
Possible ways of tossing two coins {HH, HT, TH, TT} = 4
Number of ways where at least one head comes up 4 – 1 = 3
Number of getting both heads = 1
∴Probability of getting both heads = \(\frac { 1 }{ 3 }\)
Hence, requried probability = \(\frac { 1 }{ 3 }\)

Question 9.
In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read both Hindi and English newspapers. A student is selected at random :

(i) find the probability that he reads neither Hindi nor English newspapers.
(ii) If he reads Hindi newspaper, find the probability that he reads English newspaper.
(iii) If he reads English newspaper. Find the probability that he reads Hindi newspaper.
Solution:
(i) Let
H: Event of reading Hindi newspaper
and E: Event of reading English newspaper
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2
Probability of reading at least one newspaper is
= P(H ∪ E)
P(H ∪ E) = P(H) + P(E) – P(H ∩ E)
= 0.6 + O.4 – 0.2
= 0.8
Therefore probability of reading neither Hindi nor English newspaper by students
= 1 – P(H ∪ E)
= 1 – 0.8
= 0.2 = 20%
Clearly 20% students do not read newspaper.
∴ Required probability = \(\frac { 20 }{ 100 }\) = \(\frac { 1 }{ 5 }\)

(ii) If student read Hindi newspaper English
∴ Probability of reading English newspaper also
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

(iii) If student reads English newspaper, then probability of reading Hindi newspaper also
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

Question 10.
A can solve 90% of the problems given in a book and B can solve 70%. What is the probability that at least one of them will solve the problem, selected at random from the book ?
Solution :
Let
P(A) = \(\frac { 90 }{ 100 }\); P(B) = \(\frac { 70 }{ 100 }\)
∴ Probability of at least solving by one
= P(\(\overline { A }\)B) + P(A\(\overline { B }\)) + P(AB)
= P(\(\overline { A }\)) x P(B) + P(\(\overline { A }\))P(\(\overline { B }\)) + P(A)x P(B)
= [1 – P(A)] x P(B) + P(A) [1 – P(B)] + P(A) x P(B)]
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

Question 11.
A problem in mathematics is given to 3 students whose chances of solving it are \(\frac { 1 }{ 2 }\), \(\frac { 1 }{ 3 }\)and \(\frac { 1 }{ 4 }\) What is the probability that the problem is solved ?
Solution:
Problem will be solved if at least one student can solve.
∴ Probability of solving by one student = \(\frac { 1 }{ 2 }\)
= 1 – \(\frac { 1 }{ 2 }\) = \(\frac { 1 }{ 2 }\)
Probability of not solving by any student = 1 – \(\frac { 1 }{ 3 }\) = \(\frac { 2 }{ 3 }\)
Similarly, probability of not solving by third student = 1 – \(\frac { 1 }{ 4 }\) = \(\frac { 3 }{ 4 }\)
Probability of not solving by any one of them = \(\frac { 1 }{ 2 }\) x \(\frac { 2 }{ 3 }\) x \(\frac { 3 }{ 4 }\) = \(\frac { 1 }{ 4 }\)
∴ Probability of solving by at least one of them = 1 – \(\frac { 1 }{ 4 }\) = \(\frac { 3 }{ 4 }\)

Question 12.
A bag contains 5 white and 3 black balls. Four balls are successively drawn out without replacement. What is the probability that they are alternately of different colours ?
Solution:
Total number of balls = 5 + 3 = 8
∴Probability of getting one white ball = \(\frac { 5 }{ 8 }\)
∴ Number of remaining balls = 8 – 1 = 7
out of them there are 4 white and 3 black balls.
∴ Probability of being black ball = \(\frac { 3 }{ 7 }\)
Number of remaining balls 7 – 1 = 6 where are 4 white and 2 black balls
∴ Probability of being third white ball = \(\frac { 4 }{ 6 }\)
Number of remaining balls = 6 – 1= 5,
where are 3 white and 2 black
∴Probability of being fourth black ball = \(\frac { 2 }{ 5 }\)
∵Events are independent every time
∴ Probability of being different colours ball
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

Question 13.
Probabilities of solving a specific problem independently by A and B are \(\frac { 1 }{ 2 }\), and \(\frac { 1 }{ 3 }\) respectively. If both try to solve the problem independently, find the probability that
(i) the problem is solved,
(ii) exactly one of them solves the problem.
Solution:
(i) Probability of solving the problem by A = P(A) = \(\frac { 1 }{ 2 }\)
⇒ Probability of not solving the problem by A
P(\(\overline { A }\)) = 1 – P(A)
= 1 – \(\frac { 1 }{ 2 }\) = \(\frac { 1 }{ 2 }\)
Probability of solving the problem by B.
P(B) = \(\frac { 1 }{ 3 }\)
⇒ Probability of not solving the problem by B.
P(\(\overline { B }\)) = 1 – P(B)
= 1 – \(\frac { 1 }{ 3 }\) = \(\frac { 2 }{ 3 }\)
∴ Probability that problem not is solved
P(\(\overline { A }\).\(\overline { B }\)) = P(\(\overline { A }\)).P(\(\overline { B }\))
= \(\frac { 1 }{ 2 }\) x \(\frac { 2 }{ 3 }\) = \(\frac { 1 }{ 3 }\)
⇒ Probability that problem is solved
= 1 – P(\(\overline { AB }\))
= 1 – \(\frac { 1 }{ 3 }\) = \(\frac { 2 }{ 3 }\)

(ii) A and B are independent problems.
Here P(A) = \(\frac { 1 }{ 2 }\) , P(\(\overline { B }\)) = \(\frac { 2 }{ 3 }\)
P(\(\overline { A }\)) = \(\frac { 1 }{ 2 }\) , P(B) = \(\frac { 1 }{ 3 }\)
∴ Probability that exactly one of them solves the problem
= P(A\(\overline { B }\)) + P(\(\overline { A }\)B)
= P(A).P(\(\overline { B }\)) + P(\(\overline { A }\)).P(B)
Rajasthan Board RBSE Class 12 Maths Chapter 16 Probability and Probability Distribution Ex 16.2

RBSE Solutions for Class 12 Maths

 

Share this:

  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Related

Filed Under: Class 12

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Rajasthan Board Questions and Answers

Recent Posts

  • RBSE Solutions for Class 11 Hindi Sahitya कक्षा 11 हिंदी साहित्य अन्तरा, अन्तराल
  • RBSE Solutions for Class 11 English Literature Woven Words, Julius Caesar & The Guide
  • RBSE Solutions for Class 11 English Compulsory (English Course) Hornbill & Snapshots
  • RBSE Solutions for Class 11 Geography in Hindi Medium & English Medium
  • RBSE Solutions for Class 12 Accountancy in Hindi Medium & English Medium
  • RBSE Solutions for Class 11 Home Science in Hindi Medium & English Medium
  • RBSE Solutions for Class 8 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 7 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 6 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 11 History in Hindi Medium & English Medium
  • RBSE Solutions for Class 11 Hindi Anivarya कक्षा 11 हिंदी अनिवार्य आरोह, वितान

Footer

RBSE Solutions for Class 12
RBSE Solutions for Class 11
RBSE Solutions for Class 10
RBSE Solutions for Class 9
RBSE Solutions for Class 8
RBSE Solutions for Class 7
RBSE Solutions for Class 6
RBSE Solutions for Class 5
RBSE Solutions for Class 12 Maths
RBSE Solutions for Class 11 Maths
RBSE Solutions for Class 10 Maths
RBSE Solutions for Class 9 Maths
RBSE Solutions for Class 8 Maths
RBSE Solutions for Class 7 Maths
RBSE Solutions for Class 6 Maths
RBSE Solutions for Class 5 Maths
Target Batch
RBSE Class 11 Political Science Notes
RBSE Class 11 Geography Notes
RBSE Class 11 History Notes

Copyright © 2022 RBSE Solutions

 

Loading Comments...