Rajasthan Board RBSE Class 12 Maths Chapter 16 प्रायिकता एांव प्रायिकता बंटन Ex 16.2
प्रश्न 1.
यदि दो घटनाएँ A तथा B इस प्रकार से है कि P(A) = \(\frac { 1 }{ 4 }\), P(B) = \(\frac { 1 }{ 2 }\) तथा P(A∩B) = \(\frac { 1 }{ 8 }\) तो \(P\left( \overline { A } \cap \overline { B } \right) \) ज्ञात करो।
हल :
दिया है,
प्रश्न 2.
यदि P(A) = 0.6, P(B) = p में P(A∩B) = 0.2 तथा A और B स्वतन्त्र घटनाऐ है तब p का मान ज्ञात करो।
हल :
दिया है
P(A) = 0:6
P(B) = p
P(A∩B) = 0.2
∵ A और B स्वतंत्र घटनायें हैं।
अतः P(A∩B) = P(A).P(B)
0.2 = 0.6×p
प्रश्न 3.
यदि A और B स्वतन्त्र घटनाएँ है तथा P(A) = 0.3 व P(B) = 0.4 तब ज्ञात करो
(i) P(A∩B)
(ii) P(A∪B)
(iii) \(\qquad P\left( \frac { A }{ B } \right) \)
(iv) \(\qquad P\left( \frac { B }{ A } \right) \)
हूल :
(i) दिया है :
P(A) = 0.3
P(B) = 0.4
जब A और B स्वतंत्र घटनायें हैं तो
P(A∩B) = P(A).P(B)
= 0.3 × 0.4
= 0.12
(ii) P(A∪B) = P(A) + P(B) – P(A∩B)
= 0.3 + 0.4 – 0.12
= 0.7 – 0.12
= 0.58
प्रश्न 4.
यदि A और B स्वतंत्र घटनाएँ है जहाँ P(A) = 0.3, P(B) = 0.6 तब ज्ञात करो
(i) P(A∩B)
(ii) \(P\left( A\cup \overline { B } \right) \)
(iii) P(A∪B)
(iv) \(P\left( \overline { A } \cap \overline { B } \right) \)
हल :
दिया है :
P(A) = 0.3
P(B) = 0.6
(i) P(A∩B) = P(A) x P(B)
= 0.3 x 0.6
= 0.18
(ii) \(P\left( A\cup \overline { B } \right) \)
= P(A) – P(A∩B)
= 0.3 – 0.18
= 0.12
(iii) P(A∪B)
= P(A) + P(B) – P(A∩B)
= 0.3 + 0.6 – 0.18
= 0.90 – 0.18
= 0.72
(iv) \(P\left( \overline { A } \cap \overline { B } \right) \)
= \(P\left( \overline { A } \right) \times P\left( \overline { B } \right) \)
= [1 – P(A)][1 – P(B)]
= [1 – 0.3] [1 – 0.6]
= 0.7 x 0.4
= 0.28
प्रश्न 5.
एक थैले में 5 सफेद, 7 लाल और 8 काली गेंदे है। यदि चार गेंदों को एक-एक कर बिना प्रतिस्थापन के निकाला जाये तो सभी गेंदों के सफेद होने की प्रायिकता ज्ञात करो।
हल :
दिया है :
सफेद गेंद = 5
लाल गेंद = 7
काली गेंद = 8
कुल गेंदों की संख्या = 5 +7+ 8 = 20
अतः पहली सफेद गेंद निकालने की प्रायिकता
प्रश्न 6.
यदि एक पासे को तीन बार उछाला जाये तो कम से कम एक विषम संख्या प्राप्त होने की प्रायिकता ज्ञात करो।
हल :
एक पासे पर सम संख्या 2, 4, 6 तीन तरीकों से आ सकती है।
एक पासे के उछालने पर प्रतिदर्श परिणाम
= {1, 2, 3, 4, 5, 6}
∴ सम संख्या आने की प्रायिकता = \(\frac { 3 }{ 6 }\) = \(\frac { 1 }{ 2 }\)
∴ एक सम संख्या आने की प्रायिकता = \(\frac { 1 }{ 2 }\)
∴ तीनों बार पासों पर सम संख्या आने की प्रायिकता
अतः तीनों बार पासों को उछालने पर कम से कम एक विषय संख्या प्राप्त करने की प्रायिकता = \(1-\frac { 1 }{ 8 }\)
= \(\frac { 7 }{ 8 }\)
प्रश्न 7.
52 पत्तों की गड्डी में यादृच्छया बिना प्रतिस्थापित किये दो पत्ते निकले गये है। इन दोनों पत्तों के काले रंग का होने की प्रायिकता ज्ञात करो।
हल :
ताश के 52 पत्तों में से काले रंग के पत्तों की संख्या = 26 है।
∴ एक काला पत्ता निकालने की प्रायिकता
एक पत्ता खींचने के बाद गड्डी में 51 पत्ते बचते हैं जिनमें 25 काले है।
तथा दूसरा काला पत्ता निकालने की प्रायिकता बिना प्रतिस्थापन किये
अतः दोनों काले रंग के पत्ते होने की प्रायिकता
प्रश्न 8.
दो सिक्कों को उछाला गया है। दो चित आने की प्रायिकता ज्ञात करो जबकि यह ज्ञात है कि कम से कम एक चित्त आ चुका है।
हल :
दो सिक्कों के उछालने पर संम्भावित विधियाँ
{HH, HT, TH, TT} = 4
∵एक चित्त कम से कम आ चुका है, अत: शेष विधियाँ
= 4 – 1 = 3
दोनों चित्त आने की विधियाँ = 1
अतः दोनों चित्त आने की प्रायिकता = \(\frac { 1 }{ 3 }\)
प्रश्न 9.
एक छात्रावास में 60% विद्यार्थी हिन्दी का 40% अंग्रेजी का और 20% दोनों अखबर पढ़ते है। एक छात्र को यादृच्छया चुना जाता है
(i) प्रायिकता ज्ञात करो कि वह न तो हिन्दी और न ही अंग्रेजी का अखबार पढ़ती है।
(ii) यदि वह हिन्दी का अखबार पढ़ती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात करो।
(iii) यदि वह अंग्रेजी का अखबार पढ़ती है तो उसके हिन्दी का अखबार भी पढ़ने वाली होने के प्रायिकता ज्ञात करो।
हल :
(i) माना छात्रावास में छात्राओं के हिंदी और अंग्रेजी के अखबार पढ़ने की घटनाओं को क्रमशः H तथा E से निरूपित करते हैं, अतः
छात्रा के कम से कम एक अखबार पढ़ने की प्रायिकता
= P(H∪E)
∴ P(H∪E) = P(H) + P(E) – P(H∩E)
= 0.6 + 0.4 – 0.2
= 0.8
अत: छात्रा के न तो हिंदी और न ही अंग्रेजी का अखबार पढ़ने की प्रायिकता
= 1 – P(H∪E)
= 1 – 0.8
= 0.2
= 20%
स्पष्ट है कि 20% छात्र अखबार नहीं पढ़ते हैं।
∴ अभीष्ट प्रायिकता = \(\frac { 20 }{ 100 }\)
= \(\frac { 1 }{ 5 }\)
(ii) यदि वह हिन्दी का अखबार पढ़ती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता
(iii) यदि वह अंग्रेजी का अखबार पढ़ती है तो उसके हिन्दी का अखबार भी पढ़ने वाली होने की प्रायिकता
प्रश्न 10.
A, किसी पुस्तक की 90% समस्याओं को तथा B, उसी पुस्तक की 70% समस्याओं को हल कर सकता है। पुस्तक से यादुच्छया चयनित किसी समरूा का उनमें से कम से कम एक के द्वारा हल किए जाने की प्रायिकता ज्ञात करो।
हल :
माना
∴ कम से कम एक के द्वारा हल किये जाने की प्रायिकता
प्रश्न 11.
तीन विद्यार्थियों को गणित की एक समस्या को हल करने के लिये दिया गया। इन विद्यार्थियों के द्वारा समस्या को हल करने की प्रायिकता क्रमशः \(\frac { 1 }{ 2 } ,\frac { 1 }{ 3 } \) व \(\frac { 1 }{ 4 }\) है। समस्या के हल हो जाने की क्या प्रायिकता है?
हल :
प्रश्न तभी हल होगा जबकि तीनों में से कम से कम कोई एक छात्र हल कर सके।
एक विद्यार्थी के हल करने की प्रायिकता = \(\frac { 1 }{ 2 }\)
अतः इस विद्यार्थी के हल न करने की प्रायिकता = \(1-\frac { 1 }{ 2 }\)
= \(\frac { 1 }{ 2 }\)
दूसरे विद्यार्थी के हल न करने की प्रायिकता
= \(1-\frac { 1 }{ 3 } =\frac { 2 }{ 3 } \)
इसी प्रकार तीसरे विद्यार्थी के न हल कर पाने की प्रायिकता
= \(1-\frac { 1 }{ 4 } =\frac { 3 }{ 4 } \)
∴ तीनों में से किसी के भी प्रश्न हल न कर सकने की प्रायिकता
∴ कम से कम एक विद्यार्थी द्वारा हल करने की प्रायिकता
= \(1-\frac { 1 }{ 4 } =\frac { 3 }{ 4 } \)
प्रश्न 12.
एक थैले में 5 सफेद तथा 3 काली गेंदे है। थैले में से 4 गेंदे उत्तरोतर बिना प्रतिस्थापन के निकाली जाती है। इन गेंदों के एकान्तरतः विभिन्न रंगों के होने की प्रायिकता ज्ञात करो।
हुल :
कुल गेंदों की संख्या = 5 + 3 = 8
पहली सफेद गेंद होने की प्रायिकता = \(\frac { 5 }{ 8 }\)
अब शेष गेंदों की संख्या = 8 – 1 = 7 जिनमें 4 सफेद और 3 काली गेंदें है अतः
दूसरी गेंद काली होने की प्रायिकता = \(\frac { 3 }{ 7 }\)
अब शेष गेंदों की संख्या 7 – 1 = 6 जिनमें 4 सफेद व 2 काली गेंदें है अतः
तीसरी गेंद सफेद होने की प्रायिकता = \(\frac { 4 }{ 6 }\)
चौथी गेंद निकालने के लिए शेष गेंदों की संख्या = 6 – 1 = 5
जिनमें 3 सफेद और 2 काली गेंदें हैं अतः
चौथी गेंदें काली होने की प्रायिकता = \(\frac { 2 }{ 5 }\)
∵ प्रत्येक बार गेंद निकालने की घटनायें स्वतंत्र है।
अतः विभिन्न रंगों के होने की प्रायिकता
प्रश्न 13.
एक विशेष समस्या को A और B द्वारा स्वतंत्र रूप से हल करने की प्रायिकतायें क्रमश \(\frac { 1 }{ 2 }\) व \(\frac { 1 }{ 3 }\) है। यदि दोनों स्वतंत्र रूप से समस्या को हल करने का प्रयास करते है तो प्रायिकता ज्ञात कीजिए कि
(i) समस्या हल हो जाती है।
(ii) उनमें से तथ्यतः कोई एक समस्या हल कर लेता है।
हल :
A द्वारा समस्या के हल होने की की प्रायिकता
= P(A) = \(\frac { 1 }{ 2 }\)
A द्वारा समस्या के हल न होने की प्रायिकता
तथा B द्वारा समस्या के हल होने की प्रायिकता
P(B) = \(\frac { 1 }{ 3 }\)
B द्वारा समस्या के हल न होने की प्रायिकता
∴ समस्या हल नहीं होती है; की प्रायिकता
समस्या हल हो जाती है की प्रायिकता
(ii) A और B स्वतंत्र घटनाएँ हैं।
∴और भी स्वतंत्र हैं।
∴ उनमें से तथ्यत: कोई एक समस्या हल कर देता है, की प्रायिकता
Leave a Reply