RBSE Solutions for Class 12 Maths Chapter 7 अवकलन Ex 7.6 is part of RBSE Solutions for Class 12 Maths. Here we have given Rajasthan Board RBSE Class 12 Maths 7 अवकलन Exercise 7.6.
Rajasthan Board RBSE Class 12 Maths Chapter 7 अवकलन Ex 7.6
प्रश्न 1.
निम्नलिखित फलनों के लिए रोले की प्रमेय की सत्यता की जाँच कीजिए
(a) f(x) = ex (sin x – cos x), x ∈ \(\left[ \frac { \pi }{ 4 } ,\frac { 5\pi }{ 4 } \right] \)
(b) f(x) = (x – a)m (x – b)n, x ∈ [a, b], m, n ∈ N
(c) f(x) = |x|, x ∈ [-1, 1]
(d) f(a) = x² + 2x – 8, x ∈ [- 4, 2]
(e)
(f) f(x) = [x], x ∈ [-2, 2]
हल :
(a) दिया हुआ फलन
f(x), x में बहुपदीय होने के कारण सर्वत्र अवकलनीय तथा सतत
∴ f(x), [π/4, 5π/4] में सतत तथा (π/4, 5π/4) में अवकलनीय है।
तथा f(π/4)
f(5π/4) = e5π/4 (sin 5π/4 – cos 5π/4) = 0
f(π/4)= f(5π/4) = 0
इस प्रकार से अन्तराल [π/4, 5π/4] में f(x) के लिए रौले के प्रमेय के सभी प्रतिबन्ध संतुष्ट हो जाते हैं।
⇒ c ∈ \(\left[ \frac { \pi }{ 4 } ,\frac { 5\pi }{ 4 } \right] \) का अस्तित्व है, जोकि f'(c) = 0 को संतुष्ट करता है।
अब (i) से,
f'(x) = ex (cos x + sin x) + (sin x – cos x).ex
f'(x) = ex (cos x + sin x + sin x – cos x)
इसी प्रकार
ec 2 sin c = 0
⇒ 2 sin c = 0
⇒ sin c = 0
⇒ c = π
∴ c = π ∈ (π/4,5π/4), f'(c) = 0 को संतुष्ट करते हुए इस प्रकार से रोले की प्रमेय सत्यापित हो जाती है।
(b) f(x) = (x – a)m (x – b)n, x ∈ [a, b], m, n ∈ N
यहाँ (x – a)m तथा (x – b)n दोनों बहुपद फलन हैं। यदि इनका विस्तार करके गुणनफल किया जाए तो (m + n) घात का एक बहुपद प्राप्त होगा। एक बहुपद फलन सर्वत्र सतत होता है। अत: फलन f(x) भी अन्तराल [a, b] में सतत है। बहुपद फतन अवकलनीय भी होता है।
∴ f’ (x) = m(x – a)m-1 (x – b)n + n(x – a)m (x – b)n-1
= (x – a)m-1 (x – b)n-1 x [m(x – b) + n(x – a)]
= (x – a)m-1 (x – b)n-1 x + [(m+n)x – mb – na]
जिसका अस्तित्व है।
∴ f(x) अन्तराला (a, b) में अवकलनीय है।
पुनः f(a) = (a = a)m (a + b)n = 0
f(b) = (b – a)m (b – b)n = 0
∴ f(a) = f(b) = 0
अत: रोले के प्रमेय के सभी प्रतिबन्ध सन्तुष्ट होते हैं। तब (a, b) में कम-से-कम बिन्दु : का अस्तित्व इस प्रकार हैं कि f'(c) = 0.
f’ (c) = 0
⇒(c – a)m-1 (c – b)n-1 x [(m + n)c – mb – na] = 0
⇒ (m + n)c – mb – na = 0 [∵ (c – a)m ≠ 0, (c – b)n ≠ 0]
⇒ (m + n)c = mb+ na
⇒ \(c=\frac { mb+na }{ m+n }\)
जो कि (a, b) का एक अवयव है।
[क्योकि \(\frac { mb+na }{ m+n }\) अन्तराल (a, b) को m:n के अनुपात में विभाजित करता है।]
∴ \(c=\frac { mb+na }{ m+n }\) ∈ (a, b)
इस प्रकार है कि f’ (c) = 0.
अत: रोले की प्रमेय सत्यापित होती है।
(c) f(x) = |x|, x ∈ [-1, 1]
तय
चूँकि निरपेक्ष मान फलन सतत होता है परन्तु अवकलनीय नहीं होता है, क्योंकि
x = 0 पर दायें पक्ष का अवकलज (Right hard derivative)
तथा x = 0 पर बायें पक्ष का अवकलज (Left hand derivative)
x = 0 पर, R.H.D. ≠ LH.D.
Rf’ (0) ≠ Lf’ (0)
अर्थात् x = 0 पर फलन अवकलनौय नहीं हैं।
अत: अवकलनीयता का प्रतिबन्ध (-1, 1) के सभी बिन्दुओं पर सन्तुष्ट नहीं होता है।
∴ रोले के प्रमेय का सत्यापन नहीं हो सकता है।
(d) दिया हुआ फलन
f(x) = x² + 2x – 8, x ∈ [-4, 2]
स्पष्ट है कि फलन f(x) = x² + 2x – 8 अन्तराल [ – 4, 2] में सतत हैं तथा f’ (x) = 2x + 2, जोकि विवृत्त अन्तराल [- 4, 2] के प्रत्येक
बिन्दु पर परिमित व विद्यमान है अर्थात् f(x) अन्तराल [ – 4, 2] में अवकलनीय हैं।
∵ f(- 4) = 0 = f(2)
⇒ f(- 4) = f(2)
उपरोक्त से फलन f(x), दिए गए अन्तराल में रोले प्रमेय तीनों प्रतिबन्धों को सन्तुष्ट करता है।
अब, f’ (c) = 0
2c + 2 = 0
2c = – 2
c = – 1
तथा – 1 ∈ (-4, 2)
c = – 1 ∈ (-4, 2)
इस प्रकार हैं कि
f’ (c) = 0
अत: c = – 1 के लिए रोले की प्रमेय सत्यापित होती हैं।
(e) दिया हुआ फलन
फलन f(x) अन्तराल [0, 2] में परिभाषित है। स्पष्ट है कि फलन f(x) अन्तराल [0, 2] में सतत है। अब हम इसके अवकलनीय होने की जाँच करेंगे।
अत: फलन x = 1 ∈ (0, 2) पर अवकलनीय नहीं है।
∵ यहाँ रोले प्रमेय का प्रतिबन्ध सन्तुष्ट नहीं होता है इसलिए दिए गए फलन के लिए रोले प्रमेय लागू नहीं होती है।
(f) दिया हुआ फलन
f(x) = [x], x ∈ [-2,2]
∵ फलन f(x) = [x], अन्तराल [- 2, 2] के सतत नहीं है, क्योंकि महत्त्व पूर्णाक फलन पृणूक बिन्दुओं पर न तो संतत होता है और न ही अवकलन, होता है।
∵ यहाँ रोले प्रमेय के प्रतिबन्ध सन्तुष्ट नहीं होते हैं इसलिए दिए गए फलन के लिए रोले प्रमैय लागू नहीं होता हैं।
प्रश्न 2.
निम्नलिखित फलनों के लिए रौले प्रमेय का सत्यापन कीजिए।
(a) f(x) = x² + 5x + 6, x ∈ [-3, -2]
(b) f(x) = e sin-x, x ∈ [0, π]
(c) f(x) = \(\sqrt { x(1-x) } \), x ∈ [0, 1]
(d) f(x) = cos 2x, x ∈ [0, π]
हल :
(a) दिया हुआ फलन
f(x) = x² + 5x + 6, x ∈ [-3, -2]
∵ फलन f(x) = x² + 5x + 6 जो कि एक बहुपदीय फलन है।
अत: वह अन्तराल [-3,-2] में सतत हैं।
अब f’ (x) = 2x +5 जिसका सभी x = [-3, – 2] के लिए अस्तित्व हैं।
∴ f(x) अन्तराल (-3, -2) में अवकलनीय है।
∵ f(-3) = 0 = f(-2)
⇒ f(- 3) = f(- 2)
इस प्रकार रोले के प्रमेय के सभी प्रतिबन्ध सन्तुष्ट होते हैं। तब एक बिन्दु c ∈ (-3, -2) का अस्तित्व इस प्रकार हैं कि f’ (c) = 0.
⇒ f’ (c) = 2c + 5 = 0
⇒ 2c = – 5
\(c=\frac { -5 }{ 2 }\) ∈ (-3, -2)
इस प्रकार है कि
f’ (c) = 0
इस प्रकार \(c=\frac { -5 }{ 2 }\) के लिए रोले कि प्रमेय का सत्यापन होता है।
(b) दिया हुआ फलन
f(x) = e-x sin x, x ∈ [0, π]
∵ e-x तथा sin x दोनों ही सतत हैं। अतः इनका गुणनफल e-x sin x भी सतत है अर्थात् f(x) सतत है।
पुन: f’ (x) = e-x cosx – e-x sin x, जिसका सभी x ∈ (0, π) के लिए अस्तित्व हैं अर्थात् f(x) अन्तराल (0, π) में अवकलनीय है।
∵ f(0) = 0 = f(π)
⇒ f(0) = f(π)
इस प्रकार रोले के प्रमैय के सभी प्रतिबन्ध सन्तुष्ट होते हैं। अतः एक बिन्दु c ∈ (0, π) का अस्तित्व इस प्रकार है कि f’ (c) = 0.
f’ (c) = 0
⇒ e-c cos c – e-c sin c = 0
⇒ e-c (cos – sin c) = 0
⇒ cos c = sin c (∵ ec ≠ 0)
⇒ tan c = 1
⇒ c = \(\frac { \pi }{ 4 } \)
⇒ c = \(\frac { \pi }{ 4 } \) ∈ (0, π)
इस प्रकार है कि f’ (c) = 0
इस प्रकार c = \(\frac { \pi }{ 4 } \) के लिए रोले की प्रमेय का सत्यापन होता है।
(c) दिया हुआ फलन
f(x) = \(\sqrt { x(1-x) } \), x ∈ [0, 1]
स्पष्ट है कि फलन f(x) अन्तराल [0, 1] में सतत है तथा f’ (x)
जो कि अन्तराल (0. 1) के प्रत्येक बिन्दु में परिमित व विद्यमान है अर्थात् फलन f(x) अन्तराल (0, 1) में अवकलनीय है।
∵ f(0) = 0 = f(1)
⇒ f(0) = f(1)
उपरोक्त से फलन f(x) दिए गए अन्तराल में रोले प्रमेय के सभी प्रतिबन्ध सन्तुष्ट करते हैं।
अत: f’ (c) = 0
⇒ 1 – 2c – 0
⇒ c = \(\frac { 1 }{ 2 }\)
⇒ c = \(\frac { 1 }{ 2 }\) ∈ (0. 1)
इस प्रकार हैं कि
f’ (c) = 0
इस प्रकार c = \(\frac { 1 }{ 2 }\) के लिए रोले की प्रमेय का सत्यापन होता है।
(d) दिया हुआ फलन
f(x) = cos 2x, x ∈ [0, π]
स्पष्ट है कि दिया गया फलन f(x) = cos 2x, अन्तराल [0, π] में परिभाषित हैं।
∵ coine फलन अपने प्रान्त में सतरा होता है।
अत: यह [0, π] में सतत है।
तव f’ (x) = – 2 sin 2x का अस्तित्व है।
जहाँ x ∈ (0, π)
∴ f(x), अन्तराल (0, π) में अवकलनीय है।
अव f(0) = cos 0 = 1
तथा f(π) = c0s – 2π = 1
∴ f(0) = f(π) = 1
इस प्रकार रौले के प्रमेय के सभी प्रतिबन्ध सन्तुष्ट होते हैं। तब कम-से-कम एक बिन्दु c ∈ (0, π) का अस्तित्व इस प्रकार है कि
f’ (c) = 0
∴ f’ (c) = – 2 sin 2c = 0
⇒ sin 2c = 0
⇒ 2c = π
⇒ c = π/2 जो कि (0, π) का अवयव है अर्थात्
c = \(\frac { \pi }{ 2 } \) ∈ (0, π)
इस प्रकार है कि
f’ (c) = 0
इस प्रकार c = \(\frac { \pi }{ 2 } \) के लिए रौले की प्रमेय का सत्यापन हुआ है।
प्रश्न 3.
निम्नलिखित फलनों के लिए लाग्रांज मध्यमान प्रमेय की सत्यता की जाँच कीजिए
हल :
(a) दिया हुआ फलन
जो कि एक परिमेय फलन है। चूंकि परिमेय फलन सतत होता है। जबकि इसका हर शून्य न हो। अतः f(x) = \(\frac { { x }^{ 2 }+1 }{ x } \) भी सतत है, जबकि x ≠ 0.
पुनः
जिसका अन्तराल (1, 3) के लिए अस्तित्व है।
∴ फलन अन्तराल (1, 3) में अवकलनीय है।
अ: लाग्रांज मध्यमान प्रमेय के दोनों प्रतिबन्ध सन्तुष्ट होते हैं।
∴ एक बिन्दु c ∈ (1,3) का अस्तित्व इस प्रकार है कि ।
अब c = √3 ∈(1, 3) इस प्रकार है कि
इस प्रकार लाग्नांज मध्यमान प्रमेय सत्यापित होती है।
(b) दिया हुआ फलन
यहाँ f(x) = जो कि अन्तराल [0, 2] के सतत हैं तथा f’ (x) = जो कि अन्तराल (0, 2) में परिमित व विद्यमान है। अतः फलन f(x), अन्तराल (0, 2) में अवकलनीय है। फलत: फलन f(x) लाग्रांज मध्यमान प्रमेय के दोनों प्रतिबन्धों को संतुष्ट करता है।
∵ c का मान काल्पनिक संख्या है। अत: लाग्रांज मध्यमान प्रमेय सत्यापित नहीं होती है।
(c) दिया हुआ फलन
f(x) = x² – 3x + 2, x ∈ [-2, 3]
स्पष्ट है कि फलन f(x) = x² – 3x + 2 अन्तराल [-2, 3] के संतत हैं तथा f’ (x) = 2x – 3, जो कि अन्तराल (-2, 3) में परिमित व विद्यमान हैं। अत: फलन f(x) अन्तराल (-2, 3) में अवकलनीय है। फलत: फलन f(x) लाग्नांज मध्यमान प्रमेय के दोनों प्रतिबन्धों को संतुष्ट करता है।
अब c = \(\frac { 1 }{ 2 }\) ∈(-2, 3)
इस प्रकार है कि
इस प्रकार लाग्रांज मध्यमान प्रमेय सत्यापित होती है।
(d) दिया हुआ फलन
स्पष्ट है कि फलन f(x) = \(\frac { 1 }{ 4x-1 }\) अन्तराल [1, 4] में सतत हैं। तथा f'(x) = \(\frac { -4 }{ { \left( 4x-1 \right) }^{ 2 } } \) जो कि अन्तराल (1, 4) में परिमित व विद्यमान है। अत: फलन f(x) अन्तराल (1, 4) के अवकलनीय है।
फलतः फलन f(x) लाग्रांज मध्यमान प्रमेय के दोनों प्रतिबन्धों को संतुष्ट करता है।
इस प्रकार है कि
इस प्रकार लाग्नज मध्यमान प्रमेय सत्यापित होती है।
We hope the given RBSE Solutions for Class 12 Maths Chapter 7 अवकलन Ex 7.6 will help you. If you have any query regarding RBSE Solutions for Class 12 Maths Chapter 7 अवकलन Ex 7.6, drop a comment below and we will get back to you at the earliest.
Leave a Reply