Rajasthan Board RBSE Class 12 Maths Chapter 8 Application of Derivatives Ex 8.5
Question 1.
Find maximum and minimum values of following function :
(a) 2x3 – 15x2 + 36x + 10
(b) (x – 1)(x – 2)(x – 3)
(c) sin x + cos 2x
(d) x4 – 5x4 + 5x3 – 1
Solution:
(a) Let y = 2x3 – 15x2 + 36x + 10
⇒ \(\frac { dy }{ dx } \) = 6x2 – 30x + 36
For maxima or minima,
\(\frac { dy }{ dx } \) = 0
⇒ 6x2 – 30x + 36 = 0
⇒ 6(x2 – 5x + 6) = 0
⇒ (x – 3) (x – 2) = 0
so, x = 2,3
At x = 2, maximum value of function
= 2(2)3 – 15(2)2 + 36 × 2 +10
= 16 – 60 + 72 + 10
= 38
(b) (x – 1) (x – 2) (x – 3)
Let y = (x – 1) (x – 2) (x – 3)
Then, = x3 – 6x2 + 11x – 6
(c) Let y = sin x + cos 2x ……(i)
Diff. w.r.t. x,
\(\frac { dy }{ dx } \) = cos x – 2 sin 2x …..(ii)
For maximum or minimum value \(\frac { dy }{ dx } \) = 0
or cos x – 2 sin 2x = 0
⇒ cos x – 4 sin x cos x = 0
⇒ cosx (1 -4 sinx) = 0
(d) Let y = x5 – 5x4 + 5x3 – 1
\(\frac { dy }{ dx } \) = 5x4 – 20x3 + 15x2
⇒ \(\frac { dy }{ dx } \) 5x2 (x2 – 4x + 3)
5x2(x2 – 3x – x + 3)
= 5x2 [x(x – 3) -1 (x – 3)]
= 5x2 (x – 3)(x – 1)
For maxima or minima
Question 2.
Find maximum and minimum values of following function, if exists :
(a) – | x + 1 | + 3
(b) | x + 2 | – 1
(c) | sin 4x + 3 |
(d) sin 2x + 5
Solution:
(a) Let g(x) = – | x + 1 | + 3
– |x + 1 | < 0, So function has no minimum value
Again minimum value of – | x + 1 | is 0
∴ -| x + 1 | = 0 ⇒ x = -1 then maximum value of g(x) is 3
[∵ g(-1) = – | – 1 + 1 | + 3 = 3]
(b) Let f(x) = | x + 2 | – 1
|x + 2 | > 0, So, f(x) does not have any maximum value.
Again, minimum value of | x + 2 | = 0
∴ | x + 2 | = 0
⇒ x = -2, then minimum value of f(x) is – 1
(∴ f (- 2) = | -2 + 2 | – 1 = 0 – 1 = – 1)
(c) Let f(x) = | sin 4x + 3 |
sin 4x has maximum value as 1.
∴ Maximum value of f(x) is | -1 + 3 | = 4
Again, minimum value of sin 4x
Minimum value of f(x) | -1 + 3 | = | 2 | = 2
(d) Let h(x) = sin 2x + 5
sin (2x) has maximum value as 1
So, h(x) has maximum value as 1 + 5 = 6
Again, sin (2x) has minimum value as – 1
So, minimum value of h (x) will be -1 + 5 = 4
Question 3.
Find maximum and minimum values of following functions in given interval:
(a) 2x3 – 24x + 107, x ∈ [1,3] .
(b) 3x4 – 2x3 – 6x2 + 6x + 1, x ∈ [0, 2]
(c) x + sin 2x, x ∈ [0, 2π]
(d) x3 – 18x2 + 96x, x ∈ [0, 9]
Solution:
(a) Let y = 2x3 – 24x + 107, x ∈ [1,3]
\(\frac { dy }{ dx } \) = 6x2 – 24
For maxima or minima
\(\frac { dy }{ dx } \) = 0 ⇒ 6x2 – 24 = 0
⇒ x = ± 2.
∵ x ∈ [1, 3]
∴ x = 2
Now, y1 = 2(1)3 – 24(1) + 107
= 2 – 24 + 107 = 85
y2 = 2(2)3 – 24(2) +107
= 16 – 48 + 107 = 75
y3 = 2(3)3 – 24(3) + 107
= 54 – 72 + 107 = 89
Hence, maximum value is 89 at x = 3 where as minimum value is 75 at x = 2.
(b) Let y = 3x4 – 2x3 – 6x2 + 6x + 1,
x ∈ (0, 2)
\(\frac { dy }{ dx } \) = 12x3 – 6x2 – 12x + 6
= 6(2x3 – x2 – 2x + 1)
For maxima or minima
Now y1 = 3(1)4 – 2(1)3 – 6(1)2 + 6(1) + 1
⇒ y1 = 3 – 2 – 6 + 6 + 1 = 2
⇒ y-1 = 3 (- 1)4 – 2 (-1)3 – 6(- 1)2 + 6(- 1) + 1
⇒ y-1 = 3 + 2 – 6 – 6 + 1 = -6
⇒ y0 = 3(0)4 – 2(0)3 – 6(0)2 + 6(0) + 1
⇒ y0 = 1
⇒ y2 = 3(2)4 – 2(2)3 – 6(2)2 + 6(2) + 1
= 48 – 16 – 24 + 12 + 1 = 21
∴ Hence, maximum value of function is 2π at x = 2π and minimum value of function is 0 at x = 0.
y4 = (0)3 – 18(0)2 + 96(0)
= 64 – 288 + 384 = 160
y8 = (8)3 – 18(8)2 + 96 × 8
= 512 – 1152 + 768
= 128
y9 = (9)3 – 18(9)2 + 96(9)
= 729 – 1458 + 864= 135
So, at x = 0 minimum value = 0
and at x = 4 maximum value = 160
Question 4.
Find extreme value of following functions :
(a) sin x cos 2x
(b) a sec x + b cosec x, 0 < a < b
(c) (x)1/x, x > 0
(d) \(\frac { 1 }{ x } \) log x, x ∈ (0,α)
Solution:
(a) Let
y = sin x.cos 2x …..(i)
\(\frac { dy }{ dx } \) = sin x.(- sin 2x) + cos 2x.cos x
= – 4 sin2 x.cos x + (1 – 2 sin2 x).cos x
= – 4 sin2 x cos x + cos x – 2 sin2 x cos x
= cos x (1 – 6 sin2 x) …..(ii)
So, at x = \(\frac { 3\pi }{ 2 } \) function will be maxima and maximum value of function
Hence, on putting x = e in given function we get maximum value of function which is (e)1/e.
Question 5.
Prove that value of \(\frac { x }{ 1+xtanx } \) is maximam at x = cos x.
Solution:
Question 6.
Prove that value of sin2 x (1 + cosx) is maximum x = \(\frac { 1 }{ 2 } \)
Solution:
Let y = sin2 x.(1 + cosx) …..(1)
Diff.wrt.x,
⇒ \(\frac { dy }{ dx } \) = sin2 x(- sin x) + (1 + cos x)
⇒ \(\frac { dy }{ dx } \) = sinx (-sin2 x + 2 cos x + 2 cos2 x) …..(2)
For maxima of minima \(\frac { dy }{ dx } \) = 0
Hence, at cos x = \(\frac { 1 }{ 3 } \) function has maximum value.
Question 7.
Prove that ,y = sinP θ cosq θ is maximum at tan θ = \(\sqrt { \frac { p }{ q } } \)
Solution:
+ (p cot θ – q tan θ) × 0
= -y {(q + p) + (p + q)} + 0
= -2y (p + q)
= -2 (sinp θ cosq θ) (p + q)
= -ve
So, y will be maximum
Hence, y will be of maximum value if
Leave a Reply