RBSE Solutions for Class 8 Maths Chapter 10 Factorization Additional Questions is part of RBSE Solutions for Class 8 Maths. Here we have given Rajasthan Board RBSE Class 8 Maths Chapter 10 Factorization Additional Questions.
Board | RBSE |
Textbook | SIERT, Rajasthan |
Class | Class 8 |
Subject | Maths |
Chapter | Chapter 10 |
Chapter Name | Factorization |
Exercise | Additional Questions |
Number of Questions | 39 |
Category | RBSE Solutions |
Rajasthan Board RBSE Class 8 Maths Chapter 10 Factorization Additional Questions
I.Objective Type Questions
Question 1.
Factors of expression x² + (a + b) x + ab are
(a) (x + a)(x – b)
(b) (x – a) (x + b)
(c) (x + a)(x + b)
(d) (x – a) (x – b)
Question 2.
Square of (2x + 3) is
(a) 4x² + 6x + 9
(b) 4x² + 2x + 9
(c) 4x² + 12x + 9
(d) 4x² + 9
Question 3.
Square of (6x + 1) is
(a) 36x² + 1
(b) 36x² + 6x + 1
(c) 36x² + 6
(d) 36x² + 12x + 1.
Question 4.
The product(RBSESolutions.com)of expression (2a – 3) (2a + 3) is
(a) 4a² + 2a + 9
(b) 4a² – 9
(c) 4a² – 6
(d) 4a² – 4a + 9
Question 5.
Common factor of 6x + 18xy is
(a) y
(b) 6y
(c) 6x
(d) xy
Question 6.
Factor of 2x³ + x² + 2x + 1 is
(a) (2x + 1)(x² + 1)
(b) (x² + 2)(x + 1)
(c) (x + 2)(x² + 1)
(d) (x² + 1)(x + 1)
Question 7.
Factor of 4x² + 8xy + 4y² is
(a) (2x + 2y)²
(b) (2x – 2y)²
(c) (2x + y)²
(d) (x + 2y)²
Question 8.
The factors(RBSESolutions.com)of expression a² + 2ab + b² are
(a) (a + b)(a – b)
(b) (a + b)²
(c) (a – b)²
(d) (a² + b²)²
Question 9.
The factors of expression a² – b² are
(a) (a² – b²)
(b) (a² – b²) (a + b)
(c) (a + b) (a + b)
(d) (a – b) (a + b)
Answers
1. (c)
2. (c)
3. (d)
4. (b)
5. (c)
6. (a)
7. (a)
8. (b)
9. (d).
II. Fill in the blanks
Question 1.
The equation which is true for all value of variables is called ___
Question 2.
(x + a) (x + b) = x² + (….) x + (ab)
Question 3.
a² – b² = (…) x (a – b)
Question 4.
(x – 1) (x + 1) is equal to ___
Question 5.
The value(RBSESolutions.com)of 3.5 x 3.5 – 2.5 x 2.5 is ___
Answers
1. Identity
2. (a + b)
3. (a + b)
4. x² – 1
5. 6
III. True/False Type Questions
Question 1.
Factors of a² – a + ab – a are (a – 1) (a + b).
Question 2.
Expansion of \({ \left( x+\frac { 1 }{ x } \right) }^{ 2 }\) is \({ x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } +2\)
Question 3.
Factors of x² – 7x + 12 are (x + 3) (x + 4).
Question 4.
If x = 2 and y = – 1 then value of x² + 4xy + 4y² is 0.
Answers
1. True
2. True
3. False
4. True.
IV. Matching Type Questions
Part 1 | Part 2 |
1. 103 × 107 | (a) 11021 |
2. 22y – 33z | (b) 2y |
3. common factor of 2y, 22xy | (c) – 4y |
4. – 36y³ ÷ 9y² | (d) 11 (2y – 3z) |
Answers
1. ⇔ (a)
2. ⇔ (d)
3. ⇔ (b)
4. ⇔ (c)
V. Very Short Answer Type Questions
Question 1.
Factorize 3x³ + 3x² + x + 1.
Solution
3x³ + 3x² + x + 1
= 3x² (x + 1) + 1 (x + 1)
= (x + 1) (3x² + 1)
Question 2.
Find common factor of 2(x + y) + 3(x + y) + 5(x + y)
Solution
Common factor is (x + y)
Question 3.
Simplify 2x(2x² + 2x – 9).
Solution
2x (2x² + 2x – 9)
= 2x × 2x² + 2x × 2x – 2x × 9
= 4x³ + 4x² – 18x
Question 4.
Simplify (x + 2) (x + 3).
Solution
(x + 2) (x + 3)
= x² + (2 + 3)x + 2 × 3
= x² + 5x + 6
Question 5.
Find the factor of 4x² – a².
Solution
4x² – a²
= (2x)² – a²
= (2x + a) (2x – a)
Question 6.
If x + y = 20, xy = 34 then find the value of x² + y².
Solution
(x + y)² = x² + y² + 2xy
⇒ (20)² = x² + y² + 2(34)
⇒ 400 = x² + y² + 68
⇒ x² + y² = 400 – 68
⇒ x² + y² = 332
Question 7.
If \({ x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } =62\) then find the value of \(\left( x+\frac { 1 }{ x } \right) \)
Question 8.
If x² – x – 42 = (x + k) (x + 6) then find the value of k.
Solution
x² – x – 42 = (x + k) (x + 6)
⇒ x² – 7x + 6x – 42 = (x + k) (x + 6)
⇒x (x – 7) + 6 (x – 7) = (x + k) (x + 6)
⇒ (x – 7) (x + 6) = (x + k) (x + 6)
On comparison
k = – 7
VI. Short Answer Type Questions
Question 1.
Factorize the following expression
x² + 8x + 16
Solution
x² + 8x + 16
= x² + 2 × x + 4 + (4)²
= (x + 4)²
Question 2.
Simplify :
39y3 (50y² – 98) ÷ 26y² (5y + 7)
Solution
39y3 (50y² – 98) ÷ 26y² (5y + 7)
= 3y (5y – 7)
Question 3.
Divide 8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2.
Solution
8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2.
= 2x + 2y + 2z
= 2(x + y + z)
Question 4.
Factorize x4 – (x – z)4.
Solution
x4 – (x – z)4
= (x2)2 – {(x – z)2}2
= {x2 – (x – z)2} {x2 + (x – z)2}
= {x – (x – z)} {x + (x – z)} {x2 + x2 – 2xz + z2}
= z (2x – z) (2x2 – 2xz + z2)
Question 5.
Factorize 8x2y3 (a + b)2 + 24x3y2 (a + b)2 – 16x3y3 (a + b)2.
Solution
8x2y3 (a + b)2 + 24x3y2 (a + b)2 – 16x3y3 (a + b)2
= 8x2y2 (a + b)2 [y + 3x – 2xy]
Question 6.
Factorize
(2x + 3y)² – 5(2x + 3y) – 14
Solution
Let 2x + 3y = a
then (2x + 3y)² – 5(2x + 3y) – 14
= a² – 5a – 14
= a² – 7a + 2a – 14
= a(a – 7) + 2(a – 7)
= (a – 7) (a + 2)
= (2x + 3y – 7) (2x + 3y + 2)
Question 7.
Factorize by(RBSESolutions.com)common factor method
p²qr + pq²r + pqr²
(ii) Divide the polynomial
18m3 + 6m² + 12m by 3m
Solution
(i) p²qr + pq²r + pqr²
= pqr (p + q + r))
(ii) 18m3 + 6m² + 12 m
= 6m (3m² + m + 2)
Now (18m3 + 6m2 + 12m) ÷ 3m
= 2(3m2 + m + 2)
Question 8.
Factorize the expression and divide
(z² – 4z – 12) ÷ (z + 2)
Solution
z² – 4z – 12
= z² – 6z + 2z – 12
= z(z – 6) + 2(z – 6)
= (z – 6) (z + 2)
∴(z² – 4z – 12) + (z + 2)
Question 9.
Factorize the(RBSESolutions.com)following expressions : [Solve any two]
(i) 5pq + 5p + 3q² + 3q
(ii) a² – 5a + 6
(iii) p4 – 81
Solution
(i) 5pq + 5p + 3q² + 3q
= (5pq + 3q²) + (5p + 3q)
= q(5p + 3q) + 1(5p + 3 q)
= (5p + 3q)(q + 1)
(ii) a² – 5a + 6
= a² – 3a – 2a + 6
= a(a – 3) – 2(a – 3)
= (a – 3) (a – 2).
(iii) p4 – 81
= (p²)² – (9)²
Identity a² – b² = (a + b) (a – b)
= (p² + 9) (p² – 9)
= (p² + 9) [(p)² – (3)²]
= (p² + 9) (p + 3) (p – 3).
We hope the given RBSE Solutions for Class 8 Maths Chapter 10 Factorization Additional Questions will help you. If you have any query regarding Rajasthan Board RBSE Class 8 Maths Chapter 10 Factorization Additional Questions, drop a comment below and we will get back to you at the earliest.
Leave a Reply