• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
  • RBSE Model Papers
    • RBSE Class 12th Board Model Papers 2022
    • RBSE Class 10th Board Model Papers 2022
    • RBSE Class 8th Board Model Papers 2022
    • RBSE Class 5th Board Model Papers 2022
  • RBSE Books
  • RBSE Solutions for Class 10
    • RBSE Solutions for Class 10 Maths
    • RBSE Solutions for Class 10 Science
    • RBSE Solutions for Class 10 Social Science
    • RBSE Solutions for Class 10 English First Flight & Footprints without Feet
    • RBSE Solutions for Class 10 Hindi
    • RBSE Solutions for Class 10 Sanskrit
    • RBSE Solutions for Class 10 Rajasthan Adhyayan
    • RBSE Solutions for Class 10 Physical Education
  • RBSE Solutions for Class 9
    • RBSE Solutions for Class 9 Maths
    • RBSE Solutions for Class 9 Science
    • RBSE Solutions for Class 9 Social Science
    • RBSE Solutions for Class 9 English
    • RBSE Solutions for Class 9 Hindi
    • RBSE Solutions for Class 9 Sanskrit
    • RBSE Solutions for Class 9 Rajasthan Adhyayan
    • RBSE Solutions for Class 9 Physical Education
    • RBSE Solutions for Class 9 Information Technology
  • RBSE Solutions for Class 8
    • RBSE Solutions for Class 8 Maths
    • RBSE Solutions for Class 8 Science
    • RBSE Solutions for Class 8 Social Science
    • RBSE Solutions for Class 8 English
    • RBSE Solutions for Class 8 Hindi
    • RBSE Solutions for Class 8 Sanskrit
    • RBSE Solutions

RBSE Solutions

Rajasthan Board Textbook Solutions for Class 5, 6, 7, 8, 9, 10, 11 and 12

  • RBSE Solutions for Class 7
    • RBSE Solutions for Class 7 Maths
    • RBSE Solutions for Class 7 Science
    • RBSE Solutions for Class 7 Social Science
    • RBSE Solutions for Class 7 English
    • RBSE Solutions for Class 7 Hindi
    • RBSE Solutions for Class 7 Sanskrit
  • RBSE Solutions for Class 6
    • RBSE Solutions for Class 6 Maths
    • RBSE Solutions for Class 6 Science
    • RBSE Solutions for Class 6 Social Science
    • RBSE Solutions for Class 6 English
    • RBSE Solutions for Class 6 Hindi
    • RBSE Solutions for Class 6 Sanskrit
  • RBSE Solutions for Class 5
    • RBSE Solutions for Class 5 Maths
    • RBSE Solutions for Class 5 Environmental Studies
    • RBSE Solutions for Class 5 English
    • RBSE Solutions for Class 5 Hindi
  • RBSE Solutions Class 12
    • RBSE Solutions for Class 12 Maths
    • RBSE Solutions for Class 12 Physics
    • RBSE Solutions for Class 12 Chemistry
    • RBSE Solutions for Class 12 Biology
    • RBSE Solutions for Class 12 English
    • RBSE Solutions for Class 12 Hindi
    • RBSE Solutions for Class 12 Sanskrit
  • RBSE Class 11

RBSE Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2

February 11, 2019 by Fazal Leave a Comment

RBSE Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2 is part of RBSE Solutions for Class 9 Maths. Here we have given Rajasthan Board RBSE Class 9 Maths Solutions Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2.

Board RBSE
Class Class 9
Subject Maths
Chapter Chapter 10
Chapter Name Area of Triangles and Quadrilaterals
Exercise Ex 10.2
Number of Questions Solved 6
Category RBSE Solutions

Rajasthan Board RBSE Class 9 Maths Solutions Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2

Question 1.
In figure, ABCD is a parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.
RBSE Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2
Solution.
Area of parallelogram ABCD = AB x AE
⇒ 16 cm x 8 cm = 128 cm²
Also area of parallelogram ABCD, when (RBSESolutions.com) base is AD and corresponding altitude is CF = AD x CF
i.e. AD x 10 cm = 128 cm²
⇒ AD = \(\frac { 128 }{ 10 }\) cm = 12.8 cm

RBSE Solutions

Question 2.
If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD. Show that
ar (EFGH) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD).
Solution.
Given: ABCD is a parallelogram in which E, F, G and H are respectively the (RBSESolutions.com) midpoints of sides AB, BC, CD and DA.
RBSE Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2
To prove:
ar (EFGH) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD).
Construction: Join AC and HF.
Proof: In ∆ABC,
E and F are mid-points of sides AB and BC respectively.
Therefore
EF || AC and EF = \(\frac { 1 }{ 2 }\)AC …(i)
(by mid-point theorem)
Similarly, ∆ADC, H and G are (RBSESolutions.com) mid-points of sides AD and DC respectively
∴HG || AC and HG = \(\frac { 1 }{ 2 }\)AC …(ii)
From (i) and (ii), we get
EF = HG and EF || HG
∴EFGH is a parallelogram.
In quadrilateral ABFH, we have
HA = FB and HA || FB
⇒ ABFH is a parallelogram.
Now in ∆HEF and parallelogram HABF are on the same base HF and between the same parallel HF and AB.
∴Area of ∆HEF = \(\frac { 1 }{ 2 }\) ar (||gm HABF) …(iii)
Similarly,
ar (∆HGF) = \(\frac { 1 }{ 2 }\) ar (||gm HFCD) …(iv)
Adding (iii) and (iv), we get
ar (∆HEF) + ar (∆HGF)
= \(\frac { 1 }{ 2 }\) ar (||gm HABF) + \(\frac { 1 }{ 2 }\) ar (||gm HFCD)
⇒ ar (||gm EFGH) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD).

Question 3.
P and Q are any two points lying on (RBSESolutions.com) the sides DC and AD respectively of a parallelogram ABCD. Show that:
ar (∆APB) = ar (∆BQC).
Solution.
Since ∆APB and parallelogram ABCD lie on the same base AB and between the same parallels AB and DC
ar (∆APB) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD) ….(i)
RBSE Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2
Also, ∆BQC and parallelogram ABCD lie on the same base BC and between the same parallels BC and AD.
ar (∆BQC) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD) …(ii)
From (i) and (ii), we have
ar (∆APB) = ar (∆BQC)

Question 4.
In figure, P is a point in the interior (RBSESolutions.com) of a parallelogram ABCD. Show that
(i) ar (∆APB) + ar (∆PCD) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD)
(ii) ar (∆APD) + ar (∆PBC) = ar (∆APB) + ar (∆PCD).
Solution.
Through P, draw a line EF parallel to AB.
(i) Since ∆APB and parallelogram ABFE are on the same base AB and between the same parallels AB and EF. Therefore
ar. (∆APB) = \(\frac { 1 }{ 2 }\) ar (||gm ABFE) …(i)
Similarly,
ar (∆PCD) = \(\frac { 1 }{ 2 }\) ar (||gm EFCD) …(ii)
RBSE Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2
On adding (i) and (ii), we get ar (∆APB) + ar (∆PCD)
= \(\frac { 1 }{ 2 }\) ar (||gm ABFE) + \(\frac { 1 }{ 2 }\) ar (||gm EFCD)
⇒ ar (∆APB) + ar (∆PCD) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD) …(3)
(ii) ∵ ar (∆APB) + ar (∆PBC) + ar (∆PCD) + ar (∆APD) = ar (||gm ABCD)
⇒ {ar (∆APB) + ar (∆PCD)} + ar (∆PBC) + ar (∆APD) = ar (||gm ABCD)
⇒ \(\frac { 1 }{ 2 }\) ar (||gm ABCD) + ar (∆PBC) + ar (∆APD) = ar (||gm ABCD)
⇒ ar (∆PBC) + ar (∆APD) = ar (||gm ABCD) \(\frac { 1 }{ 2 }\)  – ar(||gm ABCD)
⇒ ar (∆PBC) + ar (∆APD) = \(\frac { 1 }{ 2 }\) ar (||gm ABCD) …(iv)
From (iii) and (iv), we get
⇒ ar (∆APB) + ar (∆PCD)
= ar (∆PBC) + ar (∆APD).

RBSE Solutions

Question 5.
In figure, PQRS and ABRS are (RBSESolutions.com) parallelograms and X is any point on side BR.
Show that:
RBSE Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2
(i) ar (PQRS) = ar (ABRS)
(ii) ar (AXS) = \(\frac { 1 }{ 2 }\) ar (PQRS)
Solution.
(i) As we know that parallelograms on (RBSESolutions.com) the same base and between the same parallels are equal in area.
Here parallelograms PQRS and ABRS are on the same base SR and between the same parallels PB and SR. Therefore,
ar (PQRS) = ar (ABRS)
(ii) Again ∆AXS and parallelogram ABRS are on the same base AS and between the same parallels AS and BR.
∴ ar (∆AXS) = \(\frac { 1 }{ 2 }\) ar (∆BRS)
But ar (ABRS) = ar (PQRS)
(proved earlier)
⇒ ar (AXS) = \(\frac { 1 }{ 2 }\) ar (PQRS)

Question 6.
A farmer was having a field in the form of (RBSESolutions.com) a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?
Solution.
The field is divided into three parts. The parts are ∆APS, ∆APQ and ∆AQR.
RBSE Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2
Since ∆APQ and parallelogram, PQRS are (RBSESolutions.com) on the same base PQ and between the same parallels PQ and RS.
∴ ar (∆APQ) = \(\frac { 1 }{ 2 }\) ar (||gm PQRS)
⇒ 2 ar (∆APQ) = ar (||gm PQRS)
But ar (|| gm PQRS)
= ar (∆APQ) + ar (∆APS) + ar (∆AQR) ⇒ 2ar (∆APQ)
= ar (∆APQ) + ar (∆APS) + ar (∆AQR) ⇒ ar (∆APQ) = ar (∆APS) + ar (∆AQR)
To sow wheat and pulses in equal portions of the field separately, farmer sow wheat in ∆APQ and pulses in other two triangular region or pulses in ∆APQ and wheat in other two triangular regions.

RBSE Solutions

We hope the given RBSE Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2 will help you. If you have any query regarding RBSE Rajasthan Board Solutions for Class 9 Maths Chapter 10 Area of Triangles and Quadrilaterals Ex 10.2, drop a comment below and we will get back to you at the earliest.

Share this:

  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Related

Filed Under: Class 9

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Recent Posts

  • RBSE Solutions for Class 7 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 6 Our Rajasthan in Hindi Medium & English Medium
  • RBSE Solutions for Class 7 Maths Chapter 15 Comparison of Quantities In Text Exercise
  • RBSE Solutions for Class 6 Maths Chapter 6 Decimal Numbers Additional Questions
  • RBSE Solutions for Class 11 Psychology in Hindi Medium & English Medium
  • RBSE Solutions for Class 11 Geography in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 Hindi
  • RBSE Solutions for Class 3 English Let’s Learn English
  • RBSE Solutions for Class 3 EVS पर्यावरण अध्ययन अपना परिवेश in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 Maths in Hindi Medium & English Medium
  • RBSE Solutions for Class 3 in Hindi Medium & English Medium

Footer

RBSE Solutions for Class 12
RBSE Solutions for Class 11
RBSE Solutions for Class 10
RBSE Solutions for Class 9
RBSE Solutions for Class 8
RBSE Solutions for Class 7
RBSE Solutions for Class 6
RBSE Solutions for Class 5
RBSE Solutions for Class 12 Maths
RBSE Solutions for Class 11 Maths
RBSE Solutions for Class 10 Maths
RBSE Solutions for Class 9 Maths
RBSE Solutions for Class 8 Maths
RBSE Solutions for Class 7 Maths
RBSE Solutions for Class 6 Maths
RBSE Solutions for Class 5 Maths
RBSE Class 11 Political Science Notes
RBSE Class 11 Geography Notes
RBSE Class 11 History Notes

Copyright © 2023 RBSE Solutions

 

Loading Comments...