Rajasthan Board RBSE Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.5 Textbook Exercise Questions and Answers.
RBSE Class 9 Maths Solutions Chapter 2 Polynomials Exercise 2.5
Question 1.
Use suitable identities to find the following products :
(i) (x + 4) (x + 10)
Answer:
(x + 4)(x + 10) = x2 + (4 + 10)x + 4 × 10 = x2 + 14x + 40
(ii) (x + 8) (x – 10)
Answer:
(x + 8)(x – 10) = x2 + (8 – 10)x + 8 × (- 10) = x2 – 2x – 80
(iii) (3x + 4) (3x – 5)
Answer:
(3x + 4)(3x – 5) = (3x)2 + (4 – 5)3x + 4 x (- 5)
[Using (x + a)(x + b) = x2 + (a + b)x + ab. Here, x is taken = 9x2 – 3x – 20
(iv) (y2 + \(\frac{3}{2}\))(y2 – \(\frac{3}{2}\))
Answer:
(y2 + \(\frac{3}{2}\))(y2 – \(\frac{3}{2}\)) = (y2)2 – (\(\frac{3}{2}\))2 = y4 – \(\frac{9}{4}\)
(v) (3 – 2x)(3 + 2x)
Answer:
(3 – 2x)(3 + 2x) = (3)2 – (2x)2 = 9 – 4x2
Question 2.
Evaluate the following products without multiplying directly :
(i) 103 × 107
Answer:
103 × 107 = (100 + 3)(100 + 7) = (100)2 + (3 + 7)(100) + 3 × 7
= 100 × 100 + (10)(100) + 21 = 10000 + 1000 + 21 = 11021
(ii) 95 × 96
Answer:
95 × 96 = (100 – 5)(100 – 4) = (100)2 + (- 5 – 4)(100) + (- 5)(- 4)
= 100 × 100 + (- 9)(100) + 20
= 10000 – 900 + 20 = 9120
(iii) 104 × 96
Answer:
104 × 96 = (100 + 4) (100 – 4) = (100)2 – (4)2
= 10000 – 16 = 9984
Question 3.
Factorise the following using appropriate identities :
(i) 9x2 + 6xy + y2
Answer:
9x2 + 6xy + y2 = (3x)2 + 2(3x)(y) + (y)2
= (3x + y)2 = (3x + y)(3x + y)
(ii) 4y2 – 4y + 1
Answer:
4y2 – 4y + 1 = (2y)2 – 2(2y)(1) + (1)2
= (2y – 1)2 = (2y – 1)(2y – 1)
(iii) x2 – \(\frac{y^{2}}{100}\)
Answer:
x2 – \(\frac{y^{2}}{100}\) = x2 – (\(\frac{y}{10}\))2
= (x – \(\frac{y}{10}\))(x – \(\frac{y}{10}\))
Question 4.
Expand each of the following, using suitable identities :
(i) (x + 2y + 4z)2
Answer:
(x + 2y + 4z)2 = x2 + (2y)2 + (4z)2 + 2(x)(2y) + 2(2y)(4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8zx
(ii) (2x – y + z)2
Answer:
(2x – y + z)2 = [2x + (- y) + z]2
= (2x)2 + (-y)2 + z2 + 2(2x)(-y) + 2(-y)(z) + 2(z)(2x)
= 4x2 + y2 + z2 – 4xy – 2yz + 4zx
(iii) (- 2x + 3y + 2z)2
Answer:
(- 2x + 3y + 2z)2 = [(- 2x) + 3;y + 2z]2
= (- 2x)2 + (3y)2 + (2z)2 + 2(- 2x)(3y) + 2(3y)(2z) + 2(2z)(- 2x)
= 4x2 + 9y2 + 2 – 12xy + 12yz – 8zx
(iv) (3a – 7b – c)2
Answer:
(3a – 76 – c) = [3a + (- 7b) + (- c)]2
= (3a)2 + (- 7b)2 + (- c)2 + 2(3a)(- 76) + 2(- 7b)(- c) + 2(- c)(3a)
= 9a2 + 49b2 + c2 – 42a6 + 146c – 6ca
(v) (- 2x + 5y – 3z)2
Answer:
(- 2x + 5y – 3z)2 = [(- 2x) + 5y + (- 3z)]2
= (- 2x)2 + (5y)2 + (- 3z)2 + 2(- 2x)(5y) + 2(5y)(- 3z) + 2(-3z)(-2x)
= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12zx
(vi) [\(\frac{1}{4}\)a – \(\frac{1}{2}\)b + 1]2
Answer:
Question 5.
Factorise :
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Answer:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
= (2x)2 + (3y)2 + (- 4z)2 + 2(2x)(3y) + 2(3y)(- 4z) + 2(2x)(- 4z)
= [2x + 3y + (- 4z)]2 = (2x + 3y- 4z) = (2x + 3y- 4z)(2x + 3y- 4z)
(ii) 2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
Answer:
2x2 + y2 + 8z2 – 2√2xy + 4√2 yz – 8xz
= (- √2x)2 + y2 + (2√2z)2 + 2(- y√2 x)(y) + 2(y){2√2z) + 2(-x)(2√2z)
= (-√2x + y + 2√2z)2 = (-√2x + y + 2√2 z)(-√2 x + y + 2√2 z)
Question 6.
Write the following cubes in expanded form :
(i) (2x + 1)3
Answer:
(2x + 1)3 = (2x)3 + 3(2x)2(1) + 3(2x)(1)2 + (1)3
= 8x3 + 12x2 + 6x + 1
(ii) (2a – 3b)3
Answer:
(2a – 3b)3 = (2a)3 – 3(2a)2(3b) + 3(2a)(3b)2 – (3b)3
= 8a3 – 36a2b + 54ab2 – 27b3
(iii) [\(\frac{3}{2}\)x + 1]3
Answer:
(iv) [x – \(\frac{2}{3}\)y]3
Answer:
[x – \(\frac{2}{3}\)y]3 = x3 – 3(x)2(\(\frac{2}{3}\))2 – (\(\frac{2}{3}\)y)3
= x3 – 2x2y + \(\frac{4}{3}\)xy2 – \(\frac{8}{27}\)y3
Question 7.
Evaluate the following using suitable identities :
(i) (99)3
Answer:
(99)3 = (100 – 1)3 = (100)3 – 13 – 3(100) (1) (100 – 1)
= 1000000 – 1 – 29700
= 970299
(ii) (102)3
Answer:
(102)3 = (100 + 2)3
= (100)3 + (2)3 + 3(100) (2) (100 + 2)
= 1000000 + 8 + 61200 = 1061208
(iii) (998)3
Answer:
(998)3 = (1000 – 2)3
= (1000)3 – (2)3 – 3(1000) (2) (1000 – 2)
= 1000000000 – 8 – 5988000 = 994011992
Question 8.
Factorise each of the following :
(i) 8a3 + b3 + 12a2b + 6ab2
Answer:
8a3 + b3 + 12a2b + 6ab2 = (2a)3 + (6)3 + 3(2a)(b)(2a + b)
= (2a + b)3
= (2a + b)(2a + b)(2a + b)
(ii) 8a3 – b3 – 12a2b + 6ab2
Answer:
8a3 – b3 – 12a22b + 6ab2
= (2a)3 – b3 – 3(2a)(6)(2a – b)
= (2a – b)3
= (2a – b)(2a – b)(2a – b)
(iii) 27 – 125a3 – 135a + 225a2
Answer:
27 – 125a3 – 135a + 225a2 = (3)3 – (5a)3 – 3(3)(5a)(3 – 5a)
= (3 – 5a)3
= (3 – 5a)(3 – 5a)(3 – 5a)
(iv) 64a3 – 27b3 – 144a2b + 108ab2
Answer:
64a3 – 27b3 – 144a2b + 108ab2 = (4a)3 – (3b)3 – 3(4a)(3b)(4a – 36)
= (4a – 36 )3
= (4a – 3b)(4a – 3b)(4a – 3b)
(v) 27p3 – \(\frac{1}{216}\) – p\(\frac{9}{2}\)2 + \(\frac{1}{4}\)p
Answer:
Question 9.
Verify :
(i) x3 + y3 = (x + y) (x2 – xy + y2)
Answer:
RHS = (x + y)(x2 – xy + y2) = x(x2 – xy + y2) + y(x2 – xy + y2)
= x3 – x2y + xy2 + x2y – xy2 + y3
– x3 + y3 = L.H.S
Hence proved.
(ii) x3 – y3 = (x – y) (x2 + xy + y2)
Answer:
RHS = (x – y)(x2 + xy + y2) = x(x2 + xy + y2) – y(x2 + xy + y2)
= x3 + x2y + xy2 – x2y – xy2 – y3
= x3 – y3 = LHS Hence proved.
Question 10.
Factorise each of the following :
(i) 27y3 + 125z3
Answer:
27y3 + 125z3 = (3y)3 + (5z)3 = (3y + 5z)[(3y)2 – (3y)(5z) + (5z)2]
= (3y + 5z)(9y2 – 15yz + 25z2)
(ii) 64m3 – 343n3 (Hint: See question 9)
Answer:
64m3 – 343n3 = (4m)3 – (7n)3 = (4m – 7n)[(4m)2 + (4m)(7n) + (7n)2]
= (4m – 7n)(16m2 + 28mn + 49n2)
Question 11.
Factorise : 27x3 + y3 + z3 – 9xyz
Answer:
27x3 + y3 + z3 – 9xyz= (3x)3 + y3 + z3 – 3(3x)(y)(z)
= (3x + y + z)[(3x)2 + y2 + z2 – (3x)y – yz – z(3x)] = (3x +y +z)(9x2 + y2 +z2 – 3xy -yz – 3zx)
Question 12.
Verify that x3 + y3 + z3 – 3xyz = \(\frac{1}{2}\) (x + y + z)[(x – y)2 + (y – z)2 + (z – x)2].
Answer:
RHS = \(\frac{1}{2}\) (x + y + z)[(x – y)2 + (y – z)2 + (z – x)2]
= \(\frac{1}{2}\)(x + y+ z) (2 – 2xy + y2 + y2 – 2yz + z2 + z2 – 2zx + x3)
= (x + y + z)(x2 + y2 + z2 – yz – zx – xy)
Hence proved.
Question 13.
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Answer:
We have : x + y + z = 0 x + y = -z
Cubing both sides, we get:
(x + y)3 = (- z)3
⇒ x3 + y3 + 3xy(x + y) = – z3
⇒ x3 + y3 – 3xyz = -z
⇒ x3 + y3 + z3 – 3xyz. (∵ x + y = – z)
Hence proved.
Question 14.
Without actually calculating the cubes, find the value of each of the following :
(i) (- 12)3 + (7)3 + (5)3
Answer:
Let x = – 12, y = 7 and z = 5. .
Here, x + y + z =-12 + 7 + 5 = 0
x3 + y3 + z3 = 3xyz
or (- 12)3 + (7)3 + (5)3
= 3 × (- 12) × 7 × 5 = – 1260
(ii) (28)3 + (- 15)3 + (- 13)3
Answer:
Let x = 28, y = – 15 and z = – 13.
Here, x + y + z = 28 – 15 – 13 = 0
x3 + y6 + z‘ = 3xyz
or (28)3 + (- 15)3 + (- 13)3 = 3(28)(- 15)(- 13) = 16380
Question 15.
Give possible .expressions for the length and breadth of each of the following rectangles, in which their areas are given :
Answer:
Possible length and breadth of the rectangles are the factors of its given area.
(i) Area = 25a2 – 35a + 12 = 25a2 – 15a – 20a + 12 .
= 5a(5a – 3) – 4(5a – 3) = (5a – 3)(5a – 4)
∴ Possible expressions for length and breadth are (5a – 3) and (5a – 4) units.
(ii) Area = 35y2 + 13y – 12 = 35y2 + 28y – 15y – 12
= 7y(5y + 4) – 3(5y + 4) = (5y + 4)(7y – 3)
∴ Possible expressions for length and breadth are (5y + 4) and (7y – 3) units.
Question 16.
What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
Answer:
Possible expressions for the dimensions of the cuboids are the factors of their volumes.
(i) Volume = 3a2 – 12a = 3a(a – 4)
∴ Possible expressions for the dimensions of cuboid are 3, a and (x – 4) units.
(ii) Volume = 12ky2 + 8ky – 20k = 4k(3y2 + 2y – 5)
= 4k(3y2 – 3y + 5y – 5) = 4k[3y(y – 1) + 5(y – 1)]
= 4k(y – 1)(3y + 5)
∴ Possible expressions for the dimensions of cuboid are 4k, (y – 1) and (3y + 5) units.
Leave a Reply