Rajasthan Board RBSE Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4 Textbook Exercise Questions and Answers.
RBSE Class 10 Maths Solutions Chapter 8 Introduction to Trigonometry Exercise 8.4
Question 1.
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
Solution—
Using the identity,
cosec2A – cot2A = 1
⇒ cosec2 A = 1 + cot2 A
⇒ (cosec A)2 = cot2 A + 1
Discarding negative values of sin A for acute angle A
So, sin A = \(\frac{1}{\sqrt{\cot ^{2} A+1}}\)
Using the Identity,
sec2 A – tan2 A = 1
⇒ sec2 A = 1 + tan2 A
Question 2.
Write all the other trigonometric ratios of ∠A in terms of sec A.
Solution—
sin2 A + cos2 A = 1
⇒ sin2 A = 1 – cos2 A
1 + tan2 A = sec2 A
tan2 A = sec2 A – 1
(tan A)2 = sec2 A – 1
∴ tan A = ±\(\sqrt{\sec ^{2} \mathrm{~A}-1}\) [Leaving – ve sign for acute angle A]
Question 3.
Evaluate
(i) \(\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}\)
(ii) sin 25° cos 65° + cos 25° sin 65°
Solution:
(ii) sin 25° cos 65° + cos 25° sin 65°
= sin 25° × cos (90° – 25°) + cos 25° × sin (90° – 25°)
[∵ cos(90°- θ) = sinθ
sin(90°- θ) = cosθ
= sin 25° × sin 25° + cos 25° × cos 25°
= sin2 25° + cos2 25°
= 1
Question 4.
Choose the correct option. Justify your choice.
(i) 9 sec2 A – 9 tan2 A =
(A) 1
(B) 9
(C) 8
(D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ) =
(A) 0
(B) 1
(C) 2
(D) -1
(iii) (sec A + tan A) (1 – sin A) =
(A) sec A
(B) sin A
(C) cosec A
(D) cos A
(iv) \(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\)
(A) sec2 A
(B) – 1
(C) cot2 A
(D) tan2 A
Solution:
(i) 9 sec2 A – 9 tan2 A
= 9 (sec2 A – tan2 A) = 9 × 1 = 9
∴ Correct Option = (B)
(ii) (1 + tan θ + sec θ) (1 + cot θ – cosec θ)
∴ Correct Option = (D)
Question 5.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined :
(i) (cosec θ – cot θ)2 = \(\frac{1-\cos \theta}{1+\cos \theta}\)
(ii) \(\frac{\cos A}{1+\sin A}\) + \(\frac{1+\sin A}{\cos A}\) = 2 sec A
(iii) \(\frac{\tan \theta}{1-\cot \theta}\) + \(\frac{\cot \theta}{1-\tan \theta}\) = 1 + sec θ
[Hint : Write the expression in terms of sin θ and cos θ]
(iv) \(\frac{1+\sec A}{\sec A}\) = \(\frac{\sin ^{2} A}{1-\cos A}\)
[Hint : Simplify LHS and RHS separately]
(v) \(\frac{\cos A-\sin A+1}{\cos A+\sin A-1}\) = cosec A + cot A
using the identity cosec2 A = 1 + cot2 A.
(vi) \(\sqrt{\frac{1+\sin A}{1-\sin A}}\) = sec A + tan A
(vii) \(\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}\) = tan θ
(viii) (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
(ix) (cosec A – sin A) (sec A – cos A) = \(\frac{1}{\tan A+\cot A}\)
[Hint : Simplify LHS and RHS separately]
(x) \(\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)\) = \(\left(\frac{1-\tan A}{1-\cot A}\right)^{2}\) = tan2 A
Solution:
(i) L.H.S = (cosec θ – cot θ)2
To remove the square root sign multiplying the numerator and the denominator by 1 + sin A.
= {sin2 A + cosec2 A + 2} + {cos2 A + sec2 A + 2}
= 2 + 2 + (sin2A + cos2 A) + sec2 A + cosec2 A
= 2 + 2 + 1 + 1 + tan2 A + 1 + cot2 A
[∵ sec2 A = tan 2 A + 1,
cosec2 A = cot2 A + 1]
= 7 + tan2A + cot2 A = R.H.S
∴ L.H.S = R.H.S Hence Proved
(ix) L.H.S = (cosec A – sin A) (sec A – cos A)
∴ L.H.S = R.H.S Hence Proved
Leave a Reply